
QPL 2005 Preliminary Version

A process algebra for reasoning about quantum
security

P. Adão 1,3,4

Center for Logic and Computation, Department of Mathematics
IST, Technical University of Lisbon

Lisbon, Portugal

P. Mateus 2,3

Center for Logic and Computation, Department of Mathematics
IST, Technical University of Lisbon

Lisbon, Portugal

Abstract

We present a process algebra for specifying and reasoning about quantum security
protocols. Since the computational power of the protocol agents must be restricted
to quantum polynomial-time, we introduce the logarithmic cost quantum random
access machine (QRAM), and incorporate it in the syntax of the algebra. Proba-
bilistic transition systems give the semantic support for the process algebra. Term
reduction is stochastic because quantum computation is probabilistic and, more-
over, we consider a uniform scheduler to resolve non-deterministic choices. With
the purpose of defining security properties, we also introduce observational equiva-
lence and quantum computational indistinguishability, and show that the latter is
a congruence relation. A simple corollary of this result asserts that any security
property defined via emulation is compositional. Finally, we illustrate our approach
by establishing the concept of quantum zero-knowledge protocol.

Key words: Quantum process algebras, quantum polynomial
machines, quantum zero-knowledge proofs.

1 Email: pad@math.ist.utl.pt
2 Email: pmat@math.ist.utl.pt
3 Partially supported by FEDER/FCT project QuantLog POCTI/MAT/55796/2004.
4 Additional support from FCT grant SFRH/BD/8148/2002.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Adão and Mateus

1 Introduction

Security protocols are, in general, composed by several agents running in par-
allel, where each agent computes information (bounded by polynomial-time
on the security parameter) and exchange it with other agents. In the context
of quantum processes, the computation is bounded by quantum polynomial-
time and the information exchanged is supported by qubits. In this paper, the
problem of defining quantum security properties is addressed using a quantum
polynomial-time process algebra. This approach is highly inspired in [12,8].

The computational model we adopt to define quantum polynomial terms
is based on the logarithmic cost random access machine [4]. A hybrid model,
using both classic and quantum memory, is considered and it is shown to be
(polynomial-time) equivalent to a uniform family of quantum circuits (which
are, by themselves, equivalent to quantum Turing machines). Such machines
model the computation of each agent, and receive qubits as input and return
qubits as output.

Thanks to the non-cloning theorem, quantum information can not be
copied without prior knowledge of its state. This observation imposes some
design options in the process algebra, since it is necessary to know which agent
possesses a qubit in order to know who can retrieve some piece of information.
In order to deal with this fact, a set of agents is fixed and the qubits are
partitioned among them.

Although several other approaches to quantum process algebra are already
present in the literature (see [5], for instance), ours is quite original, due to the
universe of application—security protocols. In our approach, process terms are
divided into local and global. An agent is modeled by a local process while a
protocol is modeled by a global process, so, a global process corresponds to lo-
cal processes running in parallel. A semantics based on probabilistic transition
systems (which can be easily translated to Markov chains) is provided, and
the probabilistic transitions are defined using rules and assuming a uniform
scheduler to resolve non-deterministic choices.

Agent observation is defined as a probability distribution over binary words
obtained by measuring, at the end of the protocol and on the computational
basis, (some of) the agent’s qubits. This concept is the key ingredient to
establish observational equivalence, that in the context of security protocols
is based on computational indistinguishability [13]. Intuitively, two process
terms are observational equivalent for an agent if, after making all possi-
ble reductions to each process, it is impossible to distinguish (in quantum
polynomial-time) the qubits of the agent on both processes. Since we inter-
nalize quantum polynomial-time machines in the process algebra language,
observational equivalence is easily defined and it is shown to be a congruence
relation.

One of the most successful ways for defining secure concurrent crypto-
graphic tasks is via process emulation [1,2]. This definitional job boils down

4

Adão and Mateus

to the following: a process realizes a cryptographic task iff it emulates an
ideal process that is known to realize such task. Based on the notion of ob-
servational equivalence, we establish the notion of emulation for the quantum
process calculus and show that it is compositional. Finally, we provide the
notion of quantum zero-knowledge via process emulation.

In Section 2 the process algebra is introduced together with the logarithmic
cost random access machine. Both the syntax and the semantics of the process
algebra are clearly established, and the section is concluded by presenting the
notion of observational equivalence. Section 3 is devoted to emulation and
its composition theorem, and finally, in Section 4 quantum zero-knowledge is
defined using process emulation.

2 Process Algebra

In the context of security protocols it is common to consider a security pa-
rameter η ∈ N. In the case of quantum protocols we will also consider such
parameter in order to bound the quantum complexity of the principals and
adversaries. From now on, the symbol η is reserved to designate such security
parameter. The role of this parameter is twofold: it bounds to a polynomial
on η the number of qubits that can be sent through channels; and it bounds
all the computation to quantum polynomial time (on η). We now detail these
aspects culminating on the presentation of the process algebra language.

2.1 Quantum polynomial machines

The computational model we adopted to define quantum polynomial machine
is based on the logarithmic cost random access machine [4]. We consider
a hybrid model using both classic and quantum memory. In order to cope
with a countable set of qubits qB we adopt the following Hilbert space H
(isomorphic to `2(2qB) and L2(2qB ,#)) to model the quantum state (see [9,10]
for a discussion on why H is the correct Hilbert space for modeling a countable
set of qubits):

• each element is a map |ψ〉 : 2qB → C such that:
· supp(|ψ〉) = {v ∈ 2qB : |ψ〉(v) 6= 0} is countable;

·
∑

v∈2qB

||ψ〉(v)|2 =
∑

v∈supp(|ψ〉)

||ψ〉(v)|2 <∞;

• |ψ1〉 + |ψ2〉 = λv. |ψ1〉(v) + |ψ2〉(v);

• z|ψ〉 = λv. z|ψ〉(v);

• 〈ψ1|ψ2〉 =
∑

v∈V

|ψ1〉(v) |ψ2〉(v).

The inner product induces the norm |||ψ〉|| =
√

〈ψ|ψ〉 and, so, the distance
d(|ψ1〉, |ψ2〉) = |||ψ1〉 − |ψ2〉||. Clearly, {|v〉 : v ∈ 2qB} is an orthonormal basis
of H where |v〉(v) = 1 and |v〉(v′) = 0 for every v′ 6= v. This basis is called

5

Adão and Mateus

the computational or logic basis of H.

A configuration of a quantum random access machine (QRAM) is triple
ξ = (m, |ψ〉, s) where m ∈ NN, |ψ〉 ∈ H and s ∈ N. The first component of
the triple represents the classical memory of the machine—an infinite sequence
of natural numbers, the second component represents the quantum state of
the machine, and finally the third component is a counter that indicates how
many (qu)bit operations are allowed.

We associate to each QRAM a positive polynomial q for bounding the
number of allowed bit operations to q(η), in this way, we force each QRAM
to terminate in polynomial-time. Given a finite set of qubits at state |ϕ〉, the
initial configuration of the QRAM is the triple ξ0(|ϕ〉) = (m0, |ϕ〉⊗ |0〉, q(η)),
where the sequence m0 is such that m0(k) = 0 for all k ∈ N and |0〉 is the
unit vector in H such that |0〉(∅) = 1 (note that if Q is a 2n dimension Hilbert
space, then there is a canonical isomorphism between H and Q ⊗ H, and
therefore |ϕ〉 ⊗ |0〉 ∈ Q ⊗ H can be seen as a unit vector in H). A QRAM
receives as input a finite sequence of qubits, but since it is always possible to
encode classical bits in qubits this is not a limitation.

The set of atomic commands AC, and their associated cost is presented in
the table below 5 .

Number Instruction Computational cost

1 Ri = n |n|
2 Ri = Rj |Rj |
3 Ri = Rj +Rk |Rj | + |Rk|
4 Ri = Rj − Rk |Rj | + |Rk|
5 Ri = RjRk |Rj | × |Rk|
6 Ri = Rj/Rk |Rj | × |Rk|
7 Ri = RRj |Rj | + |RRj |
8 RRi = Rj |Ri| + |Rj |
9 PauliX [b] 1
10 PauliY [b] 1
11 PauliZ [b] 1
12 Hadamard[b] 1
13 phase[b] 1
14 π

8
[b] 1

15 c-not[b1, b2] 1
16 measure[b] → Ri 1

Most of the commands above are self-explanatory, but it is worthwhile to
notice that all commands are deterministic with exception of measure. In-
deed, according to the measurement postulates of quantum mechanics (see for
instance [3]), when a quantum system is measured the outcome is stochastic,
and moreover the state evolves accordingly to this outcome. Note that we only

5 We denote the number of bits required to represent a natural number n by |n|.

6

Adão and Mateus

consider measurements over the computational basis, nevertheless this is not
a limitation since any other qubit measurement can be recovered by applying
a unitary transformation before measuring the qubit over the computational
basis.

The set of QRAM commands C is obtained inductively as follows:

(i) a ∈ C if a ∈ AC;

(ii) c1; c2 ∈ C if c1, c2 ∈ C;

(iii) (if (Rn > 0) then c) ∈ C if c ∈ C;

(iv) (while (Rn > 0) c) ∈ C if c ∈ C.

The execution of a QRAM command c is a stochastic function between
configurations. Let Ξ = NN × H × N be the set of all configurations, and
Probfin(Ξ) be the set of all probability measures over (Ξ, 2Ξ) such that only a
finite set of configurations have probability different from 0. The execution of
a QRAM command c is a map runc : Ξ → Probfin(Ξ), and we write [c] ξ →p ξ

′

to denote that Prrunc(ξ)(ξ
′) = p. The execution of QRAM commands can be

defined using the following rules, which are quite intuitive:

s ≥ |n|

[Ri = n] (m, |ψ〉, s) →1 (m′, |ψ〉, s− |n|)
(Ri = n),

where m′(k) = m(k) for all k 6= i and m′(i) = n;

s ≥ |Rj |

[Ri = Rj] (m, |ψ〉, s) →1 (m′, |ψ〉, s− |Rj|)
(Ri = Rj),

where m′(k) = m(k) for all k 6= i and m′(i) = m(j);

s ≥ |Rj| + |Rk|

[Ri = Rj +Rk] (m, |ψ〉, s) →1 (m′, |ψ〉, s− (|Rj| + |Rk|))
(Ri = Rj +Rk),

where m′(k) = m(k) for all k 6= i and m′(i) = m(j) + m(k);

s ≥ |Rj| + |Rk|

[Ri = Rj − Rk] (m, |ψ〉, s) →1 (m′, |ψ〉, s− (|Rj| + |Rk|))
(Ri = Rj −Rk),

where m′(k) = m(k) for all k 6= i and m′(i) = max(m(j) − m(k), 0);

s ≥ |Rj| × |Rk|

[Ri = RjRk] (m, |ψ〉, s) →1 (m′, |ψ〉, s− (|Rj| × |Rk|))
(Ri = RjRk),

where m′(k) = m(k) for all k 6= i and m′(i) = m(j)m(k);

s ≥ |Rj| × |Rk|

[Ri = Rj/Rk] (m, |ψ〉, s) →1 (m′, |ψ〉, s− (|Rj| × |Rk|))
(Ri = Rj/Rk),

7

Adão and Mateus

where m′(k) = m(k) for all k 6= i and m′(i) = bm(j)/m(k)c;

s ≥ |Rj| + |RRj |

[Ri = RRj] (m, |ψ〉, s) →1 (m′, |ψ〉, s− (|Rj | + |RRj |))
(Ri = RRj),

where m′(k) = m′(k) for all k 6= i and m′(i) = m(m(j));

s ≥ |Ri| + |Rj|

[RRi = Rj] (m, |ψ〉, s) →1 (m′, |ψ〉, s− (|Ri| + |Rj|))
(RRi = Rj),

where m′(k) = m(k) for all k 6= m(i) and m′(m(i)) = m(j);

s ≥ 1

[PauliX [b]] (m, |ψ〉, s) →1 (m, |ψ′〉, s− 1)
(PauliX [b]),

where |ψ′〉 is obtained from |ψ〉 by applying the PauliX operator





0 1

1 0



 on

qubit b. Similar rules apply to the following one-qubit operators:

• PauliY





0 −i

i 0



;

• PauliZ





1 0

0 −1



;

• Hadamard





1 0

0 −1



;

• Phase





1 0

0 i



;

• π
8





1 0

0 eiπ/4



;

s ≥ 1

[c-not[b1, b2]] (m, |ψ〉, s) →1 (m, |ψ′〉, s− 1)
(c-not[b1, b2]),

8

Adão and Mateus

where |ψ′〉 is obtained from |ψ〉 by applying the control-not operator

















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

















on qubits b1 and b2;

s ≥ 1

[measure[b] → Ri] (m, |ψ〉, s) →p (m′, |ψ′〉, s− 1))
(measure[b] → Ri = 0),

where |ψ′〉 is equal to P0|ψ〉
|P0|ψ〉|

, p = |P0|ψ〉| (P0 is the projector onto the subspace

of H where qubit b takes value |0〉), m′(i) = 0 and m′(j) = m(j) for all j 6= i;

s ≥ 1

[measure[b] → Ri] (m, |ψ〉, s) →p (m′, |ψ′〉, s− 1))
(measure[b] → Ri = 1),

where |ψ′〉 is equal to P1|ψ〉
|P1|ψ〉|

, p = |P1|ψ〉| (P1 is the projector onto the subspace

of H where qubit b takes value |1〉), m′(i) = 1 and m′(j) = m(j) for all j 6= i;

[c1] (m, |ψ〉, s) →p1 (m′, |ψ′〉, s′) [c2] (m′, |ψ′〉, s′) →p2 (m′′, |ψ′′〉, s′′)

[c1; c2] (m, |ψ〉, s) →p1×p2 (m′′, |ψ′′〉, s′′)
(c1; c2);

m(n) > 0 s ≥ |Rn| [c] (m, |ψ〉, s− |Rn|) →p (m′, |ψ′〉, s′)

[(if (Rn > 0) then c)] (m, |ψ〉, s) →p [c] (m′, |ψ′〉, s′)
(if>);

m(n) = 0 s ≥ |Rn|

[(if (Rn > 0) then c)] (m, |ψ〉, s) →1 (m, |ψ〉, s)
(if⊥);

m(n) > 0 s ≥ |Rn|

[c; (while (Rn > 0) c)] (m, |ψ〉, s− |Rn|) →p (m′, |ψ′〉, s′)

[(while (Rn > 0) c)] (m, |ψ〉, s) →p (m′, |ψ′〉, s′)
(while>);

m(n) = 0 s ≥ |Rn|

[(while (Rn > 0) c)] (m, |ψ〉, s) →1 (m, |ψ〉, s− |Rn|)
(while⊥).

9

Adão and Mateus

Observe, that the reduction of QRAM commands always terminate, since
every computation is bounded by q(η) (qu)bit steps. The execution of a
QRAM command can be seen as a word run of a quantum automaton [7],
however a detailed discussion about this subject is out of the scope of this
abstract.

The output of a QRAM is the quantum state of a set of qubits. This
output set is determined by another positive polynomial o associated to the
machine. Given a security parameter η, the set of output qubits is constituted
by the first o(η) qubits.

Definition 2.1 A quantum polynomial machine is a triple M = (c, q, o) where
c is a QRAM command, q is a positive step bounding polynomial and o is a
positive output polynomial. We denote the set of all these triples by QPM.

Given a quantum polynomial machine M and a security parameter η, the
computation of M over state |ψ〉 is the probability distribution over the state
of the first o(η) qubits of |ψ′〉, where this distribution defined by the execution
rules [c](m0, |ψ〉, q(η)) →p (m′, |ψ′〉, s′). Hence, the computation of a QRAM
is a probability distribution over the state space of the first o(η) qubits. It
is traditional in quantum algorithms to measure all relevant qubits at the
end of the computation in order to obtain a classical result (see Shor’s and
Grover’s algorithms). However, since we use QRAM to compute quantum
information that can be sent through quantum channels, we do not impose this
final measurement since it may be desirable to send a superposition through
a quantum channel.

The following result asserts that the QRAM model is equivalent to the
usual quantum circuit computational model (a careful presentation of this
result is out of the scope of this abstract).

Proposition 2.2 For any uniform family of polynomial quantum circuits Q =
{Qη}η∈N, there exists a quantum polynomial machine MQ such that the MQ

computes the same stochastic function as Q. Moreover, for any quantum

polynomial machine M there exists an equivalent uniform family of polynomial

quantum circuits QM = {Qη}η∈N.

Proof (Sketch): Note that a uniform circuit uses precisely the gates defined
as quantum atomic commands of the QRAM. The construction of the circuit
can be mimicked by a RAM command c. Since this construction must be poly-
nomial in η, the program must terminate in polynomial time and therefore,
there is a polynomial q to bound the number of steps, finally the output must
always be a polynomial set of qubits, and therefore we are able to construct
an equivalent QRAM machine.

On the other hand a QRAM program is the realization of the uniform
family construction, since, for each η, a circuit can be retrieved by looking
at the sequence of quantum atomic gates generated by the execution of the
command. The stochastic nature of the execution does not bring a problem,

10

Adão and Mateus

since gates placed after a measurement can be controlled by the outcome of
that measurement. If a measurement gives the value 1 to a qubit and in that
case a gate U is placed at some qubit b, then the circuit should be constructed
by placing a control-U gate controlled by the measured qubit and targeted at
b. 2

2.2 Process algebra

As stated before, we require to know who possesses a qubit in order to know
who can retrieve some piece of information. In order to deal with this fact, a
qubit is considered to belong to some agent, and therefore, the set of qubits
qB is partitioned among all agents. To make this more precise, a countable
set A = {a1, . . . , ak, . . . } of agents is fixed once and for all, and moreover the
partition qB = {qBai}ai∈A of qB is such that each set qBai is countable and
recursively enumerable.

Note that each qBai has a total order (with a bottom element) induced
by its recursive enumeration. The purpose of this total ordering is to reindex
the qubits accessed by a QPM M when an agent a executes M . An obvious
desideratum of the system is that an agent a is restricted to compute over its
own qubits qBa, and therefore, when agent a executes a quantum polynomial
machine M , this machine must have access only to the qubits in qBa (note that
if the qubits of a are entangled with other qubits, then when the former are
modified so can be the latter). Therefore, if, for instance, an agent a executes
a machine that consists of the command PauliX [b], and if qBa is recursively
enumerated by γ, then the command is replaced by PauliX [γ(b)]. The same
procedure applies to the input and output qubits, so when a machine executed
by a outputs the first o(η) qubits, the machine is in fact outputting the qubits
{γ(o(1)), . . . , γ(o(η))} ⊂ qBa ⊆ qB. We leave the precise presentation of the
reindexing process for the full version of the paper.

Communication between agents is achieved via public channels, allowing
qubits to be exchanged. Clearly, this process is modeled by modifying the
partition of qB. It is also convenient to allow parallelism inside an agent (that
is, an agent may be constituted by several processes in parallel), for this pur-
pose, private channels (that can not be intercepted) allowing communication
between the agent local processes are introduced. To make this assumptions
clear, two countable disjoint sets of quantum channels are considered, the set
of global or public channels G = {g1, g2 . . . , gk, . . . }, and the set of local or

private channels L = {l1, l2, . . . , lk, . . . }. We denote by C the set G ∪ L. All
global channels can be read and written by an adversary while local channels
correspond to private communication from one agent to itself. One role of
the security parameter is to bound the bandwidth of the channels. Hence, we
introduce a bandwidth map bw : C → q, where q is the set of all polynomials
taking positive values. Given a value η for the security parameter, a channel
c can send at most bw(c)(η) qubits.

11

Adão and Mateus

We also consider a countable set of variables Var = {x1, x2, . . . , xk, . . . },
which are required to define qubit terms. A qubit term t is either a finite
subset of qB or a variable x ∈ Var.

Finally, we present the language of processes, which is a fragment of π-
calculus. Mind that the overall computation must be quantum polynomial on
η and therefore we do not cope with recursion nor mobility. First, we establish
the language of an agent, that we call local process language.

Definition 2.3 The language of local processes L is obtained inductively as
follows:

(i) 0 ∈ L (termination);

(ii) c〈M(t)〉 ∈ L where M ∈ QPM, t is a qubit term, and c ∈ C (output);

(iii) c(x).Q ∈ L where c ∈ C, x ∈ Var and Q ∈ L (input);

(iv) [M(t) = 0].Q where M ∈ QPM, t is a qubit term, and Q ∈ L (match);

(v) (Q1|Q2) where Q1, Q2 ∈ L (parallel composition);

(vi) !qQ where Q ∈ L and q ∈ q (replication).

Most of the (local) process terms are intuitive. The output term c〈M(qB′)〉
means that the output of machine M , which received the finite set of qubits
qB′ as input, is sent through channel c. The input term c(x).Q means that a
set of qubits is going to be received from c, and upon reception, x takes the
value of the received qubits.

After fixing the security parameter η, we can get rid of replication by
evaluating each process !qR as q(η) copies of R in parallel. Therefore, we
always assume that a process term has no replication. Now, as state before,
a protocol is constituted by a set o agents running in parallel, therefore the
global language (or protocol language) is quite simple:

Definition 2.4 The language of global processes G over a set of agents A is
defined inductively as follows:

(i) 0 ∈ G (global termination);

(ii) P‖(a : Q) ∈ G where P ∈ G, a ∈ A does not occur in P , and Q ∈ L
(global parallel composition).

The following example uses the process language to describe the RSA
cryptanalysis using Shor’s algorithm.

Example 2.5 [Shor’s based RSA cryptanalysis] Let p, q be primes (with η
length binary expansion), and e, d integers such that ed ≡ 1 mod φ(pq). Alice
is a simple process S that knows some message w and outputs we mod pq,
where e is the public key of Bob. This dummy process can be presented as

(a : A(w)) := (a : g〈we mod pq〉).

Bob receives x and computes xd mod pq. This procedure can be modeled by

12

Adão and Mateus

the following process:

(b : B) := g(x).(l〈xd mod pq〉|l(y).0).

Therefore the RSA protocol is given by the process (a : A(w))‖(b : B). Fi-
nally, we can write the “attacking” process, Eve. She factorizes pq, inverts e
mod φ(pq) (thus, allowing her to find d), and intercepts the message sent by
Alice (on channel g). We write this process as follows:

c : l1〈Shor(pq)〉|l1(y).l2〈Inv(y, e)〉|g(x).l2(z).(l3〈x
z mod pq〉|l3(w).0).

Further examples, where quantum and classical information is exchanged,
like quantum teleportation, shall be presented in the full version of the paper.

2.3 Semantics

In order to define the semantics of a local process we need to introduce the
notion of local configuration. A local configuration or agent configuration is
a triple (|ψ〉, qBa, Q) where |ψ〉 ∈ H, qBa ⊆ qB is a countable, recursive
enumerable set and Q ∈ L. The first element of the local configuration is the
global state of the protocol, the second element is the set of qubits the agent
possesses and the last element is the local process term.

The semantics of a local process is a probabilistic transition system where
the transitions are defined by rules. We use (|ψ〉, qBa, Q) →p (|ψ′〉, qBa, Q

′)
to state that, at global state |ψ〉, when agent a possesses qubits qBa, the
local process Q is reduced to Q′ and global state is modified to |ψ′〉 with
probability p. It is also worthwhile to observe that we use the notation
M(|ψ〉, qBa, qB1) →p (|ψ′〉, qB2) to denote that the execution of the QRM
M , operating on qBa (that is, using the recursive enumeration of qBa to rein-
dex the position of the qubits), and receiving as input qB1, outputs qB2 and
modify the global state |ψ〉 to |ψ′〉 with probability p. For the case of local pro-
cesses, the sets qB1 and qB2 are irrelevant, because the qubits owned by the
agent remain the same when a local communication (LCom rule) is applied.
Their functionality will be clear when we present the global rules.

M(|ψ〉, qBa, qB1) →p (|ψ′〉, qB2) qB1, qB2 ⊆ qBa |qB2| ≤ bw(l)(η)

(|ψ〉, qBa, l(x).Q|l〈M(qB1)〉) →p (|ψ′〉, qBa, Qx
qB2

)
(LCom)

We also introduce the term M ; Meas to denote the machine that, after
executing M makes a measurement on the computational basis of the output
qubits of M . So a match corresponds to making a measurement on the output
qubits of M and checking whether the result is the 0 word.

(M ; Meas)(|ψ〉, qBa, qB1) →p (|ψ′〉, qB2) |ψ′〉|qB2 = |0〉

(|ψ〉, qBa, [M(qB1) = 0].Q) →p (|ψ′〉, qBa, Q)
(Match>)

13

Adão and Mateus

(M ; Meas)(|ψ〉, qBa, qB1) →p (|ψ′〉, qB2) |ψ′〉|qB2 6= |0〉

(|ψ〉, qBa, [M(qB1) = 0].Q) →p (|ψ′〉, qBa, 0)
(Match⊥)

The remaining rules are self-explanatory.

(|ψ〉, qBa, P) →p (|ψ′〉, qBa, P
′)

(|ψ〉, qBa, P |Q) →p (|ψ′〉, qBa, P ′|Q)
(LLPar)

(|ψ〉, qBa, Q) →p (|ψ′〉, qBa, Q
′)

(|ψ〉, qBa, P |Q) →p (|ψ′〉, qBa, P |Q′)
(LRPar)

We proceed by presenting the global rules. A global configuration is a triple
(|ψ〉, qB, P) where |ψ〉 ∈ H, qB = {qBa}a∈A is a partition of qB indexed by
the set of agents A (where each qBa is countable and r.e.) and P ∈ G. The
semantics of a global process is defined by the following rules:

(|ψ〉, qBa, Q) →p (|ψ′〉, qBa, Q
′)

(|ψ〉, qB, (a : Q)) →p (|ψ′〉, qB, (a : Q))
(LtoG)

M(|ψ〉, qBb, qB1) →p (|ψ′〉, qB2) qB1, qB2 ⊆ qBb |qB2| ≤ bw(g)(η)

(|ψ〉, qB, (a : g(x).Q)‖(b : g〈M(qB1)〉)) →p (|ψ′〉, qB′, (a : Qx
qB2

))
(GCom)

where qB′ = {qB′
a}a∈A, qB′

a = qBa ∪ qB2 and qB′
b = qBb \ qB2.

(|ψ〉, qB, P1) →p (|ψ′〉, qB′, P ′
1)

(|ψ〉, qB, P1‖P2) →p (|ψ′〉, qB′, P ′
1‖P2)

(GLPar)

(|ψ〉, qB, P2) →p (|ψ′〉, qB′, P ′
2)

(|ψ〉, qB, P1‖P2) →p (|ψ′〉, qB′, P1‖P ′
2)

(GRPar).

All the rules are very simple to grasp. The only non trivial rule is global
communication (GCom), that makes qubits to be exchanged from one agent
to another, and therefore an adjustment is required in the qubit partition.

Process term reductions are non-deterministic, in the sense that several
different reductions could be chosen at some step. In order to be possible
to make a quantitative analysis, this reduction should be probabilistic. For
the sake of simplicity, we assume a uniform scheduler, that is, the choice on
any possible reduction is done with uniform probability over all possible non-
deterministic reductions. In the full paper we present in detail the scheduler
model and, in principle, any probability distribution modeled by a QPM can
be used to model the scheduler policy. Finally, note that by applying local
and global rules, and assuming a uniform scheduler, one can define the many
step reduction →∗

p such that (|ψ1〉, qB1, P1) →
∗
p (|ψn〉, qBn, Pn), whenever:

• (|ψ1〉, qB1, P1) →p1 (|ψ2〉, qB2, P2) →p2 · · · →pn−1 (|ψn〉, qBn, Pn);

• p = p1
R1

× p2
R2

×· · ·× pn−1

Rn−1
where Ri is the number of possible non-deterministic

choices for (|ψi〉, qBi, Pi) for all i ∈ {1, . . . , n− 1};

• (|ψn〉, qBn, Pn) can not be reduced any more.

14

Adão and Mateus

The many step reduction takes into account the scheduler choice, by weighting
each stochastic reduction pi with yet another probability 1

Ri
, where Ri is the

number of possible non-deterministic choices at step i.

2.4 Observations and observational equivalence

At the end of a protocol, each agent a ∈ A is allowed to measure a polynomial
(in η) number of qubits in qBa to extract information. We can always assume
that these qubits are the first, say, r(η) qubits of qBa where r is a positive
polynomial. Therefore, the many step reduction of a process term P induces a
probability distribution on 2r(η), where 2r(η) is the set of all possible outcomes
of r(η) qubits when measured over the computational basis (that is, 2r(η) is
the set of all r(η)-long binary words).

Definition 2.6 Given a positive polynomial r and a global configuration
(|ψ〉, qB, P), let

Γ(|ψ〉,qB,P) = {(|ψ′〉, qB′, P ′) : (|ψ〉, qB, P) →∗
p (|ψ′〉, qB′, P ′) and p > 0}.

We define the observation of an agent a to be the family of probability mea-
sures

Oa
r = {(2r(η), 22r(η),Prar(η))}η∈N

where:

• Prar(η)({w}) =
∑

γ∈Γ(|ψ〉,qB,P)
pγ × |〈w|ψγ〉|;

• pγ is such that (|ψ〉, qB, P) →∗
pγ γ;

• |ψγ〉 is the first component of γ;

• |〈w|ψγ〉| is the probability of observing the r(η)-long binary word w by
measuring the r(η) first qubits of qBa (qubits in possession of agent a) of
|ψγ〉 in the computational basis.

Note that the summation used to compute Prar(η)({w}) is well defined, since
Γ(|ψ〉,qB,P) is finite. It is clear at this point,that an observation of an agent is
a random r(η)-long binary word, with distribution given by Prar(η).

The notion of observational equivalence we adopt is based on computa-
tional indistinguishability, [12], as usual in the security community. First, we
introduce the concept of context. The set of global contexts C is defined in-
ductively as follows: [] ∈ C; C[]‖P and P‖C[] ∈ C provided that C[] ∈ C
and P ∈ G. Given a context C[] and a global process P , the notation C[P]
means that we substitute the process P for the [] in C[].

Definition 2.7 Let P and P ′ be process terms. We say that P is computa-

tionally indistinguishable by agent a from P ′ iff for every context C[], poly-
nomials q and r, |ψ〉 ∈ H, partition qB of qB, η sufficiently large and binary
word w ∈ 2r(η),

|Prar(η)(w) − Pr′
a
r(η)(w)| ≤

1

q(η)

15

Adão and Mateus

where Prar(η) is given by the observation of a for configuration (|ψ〉, qB, C[P])

and Pr′
a
r(η) is given by the observation of a for configuration (|ψ〉, qB, C[P ′]).

In such case we write P ' P ′.

Two processes are computationally indistinguishable if they are indistin-
guishable by contexts, that is, for any input (here modeled by |ψ〉 and qB),
there is no context which can distinguish, up to a negligible function, the
outputs produced. The definition above extends the classical definition of
computational indistinguishability to the quantum case, since processes can
be modeled by quantum polynomial machines and therefore C[] induces the
required distinguishing machine. A detailed proof of this result is out of the
scope of this extended abstract.

In order to set up compositionality, the following result is of the utmost
importance:

Proposition 2.8 Computational indistinguishability is a congruence relation

with respect to the parallel primitive of G.

Proof. Both symmetry and reflexivity are trivial to check. Transitivity fol-
lows by triangular inequality, and taking into account that 1

2
q(n) is a polyno-

mial. Congruence on the global parallel operator follows by noticing that for
any contexts C[] and C′[], C ′[C[]] is also a context. 2

3 Emulation and Composition Theorem

One of the most successful ways for defining secure concurrent cryptographic
tasks is via process emulation [1,2]. This definitional job boils down to the
following: a process realizes a cryptographic task iff it emulates an ideal pro-
cess that is known to realize such task. In this section, we detail the notion
of emulation for the previously established quantum process calculus, guided
by the goal of defining secure functionalities.

Let I be an ideal protocol that realizes (the honest part of) some secure
protocol and P a process that implements the functionality specified by I.
The overall goal is to show that P realizes, without flaws, (part of) the secure
functionality specified by I. The goal is achieved if for any real adversary,
say (a : A), the process P ||(a : A) is computationally indistinguishable by
the adversary a from the process I||(a : B) for some ideal adversary (a : B),
where an ideal adversary is an adversary which cannot corrupt I and a real
adversary is any local process for agent a. This property asserts that given a
real adversary (a : A), agent a cannot distinguish the information leaked by
P ||(a : A) from the information leaked by the well behaved process I||(a : B)
for some ideal adversary (a : B), and therefore, we infer that P ||(a : A) is also
well behaved. This discussion leads to the concept of emulation with respect
to a set of real adversaries A and ideal adversaries B.

Definition 3.1 Let P and I be process terms and A and B sets of global

16

Adão and Mateus

process where the only agent is the adversary a, then P emulates I with
respect to A and B iff for all processes (a : A) ∈ A there exists a process
(a : B) ∈ B such that P ||(a : A) ' I||(a : B). In such case we write P ≡a

A,B I
and say that P is a secure implementation of I with respect to A and B.

A desirable property of the emulation relation is the so called Composition
Theorem. This result was first discussed informally for the the classical secure
computation setting in [11], and states the following: if P is a secure imple-
mentation of part I of an ideal protocol, R and J are two protocols which use
the ideal protocol I as a component, and finally, R is a secure implementation
of J , then RI

P should be a secure implementation of J . This result is captured
as follows:

Theorem 3.2 Let P, I be processes, R[] and J [] contexts and A,B sets of

processes over agent a and C,D sets of processes over agent b. If R[I||(a :
B)] ≡b

C,D J [I||(a : B)] for any (a : B) ∈ B and P ≡a
A,B I then for any

adversary (a : A) ∈ A there exists (a : B) ∈ B such that R[Q||(a : A)] ≡b
C,D

J [I||(a : B)].

Proof. Let (a : A) ∈ A and (a : B) ∈ B be such that P ||(a : A) '
I||(a : B). Now choose some (b : C) ∈ C, clearly, R[Q||(a : A)]||(c :
C) ' R[I||(a : B)]||(c : C) since ' is a congruence relation. Moreover,
since R[I||(a : B)] ≡C,D J [I||(a : B)], there is a (b : D) ∈ D such that
R[I|(a : B)]|C ' J [I||(a : B)]||(b : D). Finally, by transitivity of ',
we have that R[Q||(a : A)]||(b : C) ' J [I||(a : B)]||(b : D) and hence
R[Q||(a : A)] ≡C,D J [I||(a : B)]. 2

Observe that ideal protocols are constituted by a honest part I and an
ideal adversary (a : B), and therefore are of the form I||(a : B). This justifies
why R[I||(a : B)] was considered in the proposition above instead of R[I].
Moreover, adversaries for the functionality implemented by R and J might be
different from those of I and Q, therefore, two pairs of sets of processes C, D
and A, B are required to model two kinds of adversaries.

4 Quantum Zero-Knowledge Proofs

An interactive proof is a two party protocol, where one agent is called the
prover and the other is called the verifier. The main objective of the protocol
is to let the prover convince the verifier of the validity of an assertion, how-
ever, this must be done in such a way that the prover can not convince the
verifier of the validity of some false assertion. Zero-knowledge is a property
of the prover (strategy). Consider the following informal notion of (quantum)
computational zero-knowledge strategy, which corresponds to the straightfor-
ward lifting to the quantum setting of the classical version (a more careful
definition will be presented in the full version of the paper):

17

Adão and Mateus

Definition 4.1 A prover strategy S is said to be quantum computational zero-

knowledge over a set L iff for every quantum polynomial-time verifier strategy,
V there exists quantum polynomial-time algorithm M such that (S, V)(l) is
(quantum) computationally indistinguishable from M(l) for all l ∈ L where
(S, V) denotes the the output of the interaction between S and V .

The main application of zero-knowledge proof protocols in the crypto-
graphic setting is in the context of a user U that has a secret and is supposed
to take some steps, depending on the secret. The problem is how can other
users verify that U has took the correct steps without U disclosing its secret.
Zero-knowledge proof protocols (ZKP) can be used to satisfy these conflicting
requirements.

Actually, the notion of (quantum computational) zero-knowledge proofs
can be captured through emulation very easily. Assuming that a proof strategy
S(x) and verifier V (x) are modeled as terms of the process algebra, it is
actually possible to model the interaction between p and v by the process
(p : S)||(v : V). Denote by Lv(l) the set of all process terms for the verifier
(v : V)xl , that is, any process term (v : V) where the free variable x was
replaced by the binary word l. The following nice characterization happens:

Proposition 4.2 A process term (p : S) denoting a proof strategy is compu-

tational zero-knowledge for L iff (p : S)xl ≡
v
Lv(l),Lv(l) 0 for all l ∈ L.

Proof (Sketch): Notice that the ZKP resumes to impose that for all (v : V)xl
there is a process (v : V ′)xl such that (p : S)xl ||(v : V)xl ' 0||(v : V ′)xl . Since

the semantics of a local process can be modeled by a QPM, and moreover

0||(v : V ′)xl can model any QPM, the notion proposed in this proposition merges

with Definition 4.1. 2

So, a process (p : S) models a quantum zero-knowledge strategy if, from
the point of view of the verifier, it is impossible to distinguish the final result
of the interaction with (s : S) from the interaction with the 0 process. A clear
corollary of Theorem 3.2 is that, quantum zero-knowledge is compositional.

It is simple to adapt the emulation approach to several other quantum
security properties, like quantum secure computation, authentication and so
on. Further details on this line of research, including concrete examples, are
to be presented in a longer version of this paper.

5 Conclusions

The contributions of this paper are multiple. First, we introduced a process
algebra for specifying and reasoning about security protocols. To restrict the
computation power of the agents to quantum polynomial-time, we introduced
the logarithm cost quantum random access machine, and incorporated it in
the process language. Due to the special aspects of quantum information,

18

Adão and Mateus

qubits were assumed to be partitioned among agents, and the (quantum)
computation of an agent was restricted to its own qubits.

Second, we defined observational equivalence and quantum computational
indistinguishability for the process algebra at hand, and showed that the lat-
ter is congruent with the global process algebra operations. Moreover, we
obtained a simple corollary of this result: security properties defined via em-
ulation are compositional.

Finally, we illustrated the definition of a security property via emulation
with the concept of quantum zero-knowledge. It is however straightforward to
adapt this approach to several other quantum security properties, like quan-
tum secure computation.

Acknowledgement

The authors wish to express their gratitude to the regular participants in the
QCI Seminar at CLC, specially to Amı́lcar Sernadas and João Rasga, who
gave very useful feedback.

References

[1] Abadi, M. and A. D. Gordon, A calculus for cryptographic protocols: The Spi
Calculus, Information and Computation 148 (1999), pp. 1–70, full version
available as SRC Research Report 149, January 1998.

[2] Canetti, R., Universally composable security: A new paradigm for cryptographic
protocols, in: 42nd IEEE Symposium on Foundations of Computer Science
(FOCS) (2001), pp. 136–145, full version available at IACR ePrint Archive,
Report 2000/067.

[3] Cohen-Tannoudji, C., B. Diu and F. Laloë, “Quantum Mechanics,” John Wiley,
1977.

[4] Cook, S. A. and R. A. Reckhow, Time bounded random access machines, Journal
of Computer and System Sciences 7 (1973), pp. 354–375.

[5] Gay, S. J. and R. Nagarajan, Communicating quantum processes, in: J. Palsberg
and M. Abadi, editors, Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL) (2005), pp. 145–
157.

[6] Lincoln, P., J. Mitchell, M. Mitchell and A. Scedrov, A probabilistic polynomial-
time framework for protocol analysis, in: M. Reiter, editor, Proceedings of the 5th
ACM Conference on Computer and Communications Security (CCS) (1998),
pp. 112–121.

[7] Martins, A. M., P. Mateus and A. Sernadas, Minimization of quantum
automata, Technical report, CLC, Department of Mathematics, Instituto
Superior Técnico, 1049-001 Lisboa, Portugal (2005), submitted for Publication.

19

Adão and Mateus

[8] Mateus, P., J. C. Mitchell and A. Scedrov, Composition of cryptographic
protocols in a probabilistic polynomial-time process calculus, in: R. Amadio and
D. Lugiez, editors, CONCUR 2003 - Concurrency Theory, Lecture Notes in
Computer Science 2761 (2003), pp. 327–349.

[9] Mateus, P. and A. Sernadas, Reasoning about quantum systems, in: J. J. Alferes
and J. A. Leite, editors, Proceedings of the 9th European Conference on Logics
in Artificial Intelligence, Lecture Notes in Artificial Intelligence 3229 (2004),
pp. 239–251.

[10] Mateus, P. and A. Sernadas, Weakly complete axiomatization of exogenous
quantum propositional logic, Technical report, CLC, Department of
Mathematics, Instituto Superior Técnico, 1049-001 Lisboa, Portugal (2005),
submitted for Publication. http://arxiv.org/abs/math.LO/0503453.

[11] Micali, S. and P. Rogaway, Secure computation, in: J. Feigenbaum, editor,
Advances in Cryptology - CRYPTO ’91, Lecture Notes in Computer Science
576 (1991), pp. 392–404.

[12] Mitchell, J. C., A. Ramanathan, A. Scedrov and V. Teague, A probabilistic
polynomial-time calculus for analysis of cryptographic protocols (preliminary
report), Electronic Notes in Theoretical Computer Science 45 (2001), pp. 1–31.

[13] Yao, A. C., Theory and applications of trapdoor functions, in: 23rd IEEE
Symposium on Foundations of Computer Science (FOCS) (1982), pp. 80–91.

20

http://arxiv.org/abs/math.LO/0503453

	Introduction
	Process Algebra
	Quantum polynomial machines
	Process algebra
	Semantics
	Observations and observational equivalence

	Emulation and Composition Theorem
	Quantum Zero-Knowledge Proofs
	Conclusions
	Acknowledgement
	References

