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Abstract

We introduce an abstract notion of POVM within the categorical quantum mechanical semantics in terms
of †-compact categories. Our definition is justified by two facts: i. we provide a purely graphical abstract
counterpart to Naimark’s theorem, which establishes a bijective correspondence between POVMs and ab-
stract projective measurements on an extended system; ii. in the category of Hilbert spaces and linear maps
our definition coincides with the usual one.
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1 Introduction

The work presented in this paper contributes to a line of research which aims

at recasting the quantum mechanical formalism in purely category-theoretic terms

[2,3,10,19], providing it with compositionality, meaningful types, additional degrees

of axiomatic freedom, a comprehensive operational foundation, and in particular,

high-level mechanisms for reasoning i.e. logic. The computational motivation for

this line of research, if not immediately obvious to the reader, can be found in

earlier papers e.g. [2]. Particularly informal physicist-friendly introductions to this
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program are available [7,8,9]. This program originates in a paper by Samson Abram-

sky and one of the authors [2], and an important contribution was made by Peter

Selinger, establishing an abstract definition of mixed state and completely positive

map in purely multiplicative terms [19]. The starting point of this paper is a recent

category-theoretic definition for projective quantum measurements which does not

rely on any additive structure, due to Dusko Pavlovic and one of the authors [10].

We will refer to this manner of defining quantum measurements as coalgebraically.

We show that the usual notion of POVM (e.g. [6,11,17]) admits a purely multi-

plicative category-theoretic counterpart, in the sense that it is supported both by

a Naimark-type argument with respect to the coalgebraically defined ‘projective’

quantum measurements, and by the fact that we recover the usual notion of POVM

when we consider the category of Hilbert spaces and linear maps.

Recall that a projective measurement is characterised by a set of projectors

{Pi : H → H}i, i.e. for all i we have Pi ◦ Pi = Pi = P†
i , such that

∑

i Pi = 1H,

which implicitly implies that for i 6= j we have Pi ◦ Pj = 0. To each i we assign

an outcome probability Tr(Pi ◦ ρ). More generally, a POVM is a set of positive

operators {Fi : H → H}i, i.e. Fi = f
†
i ◦ fi for some linear operator fi, such that

∑

i Fi = 1H, and to each i we now assign an outcome probability Tr(Fi ◦ ρ). By

positivity and by cyclicity of the trace we can rewrite this outcome probability as

Tr(fi ◦ ρ ◦ f
†
i ). Note that we can always choose the fi to be the unique positive

square root of the positive operator Fi, a fact which we will use later on. While

in the case of projective measurements the state of the system undergoes a change

ρ 7→ Pi ◦ ρ ◦ Pi, for a POVM one typically is only concerned with the probabilities

of outcomes, not the change of state i.e. no meaning is attached to ρ 7→ fi ◦ ρ ◦ f
†
i .

So the type of a POVM is

POVM : quantum (mixed) n-states → classical (mixed) n-states .

Using the fact that classical n-states can be represented by [0, 1]-valued diagonal

n × n-matrices with trace one we can write

POVM :: ρ 7→
∑

i

Tr(fiρf
†
i )|i〉〈i|

where we used standard Dirac notation to represent the canonical projectors {|i〉〈i|}i

with respect to the computational base {|i〉}i.

Example 1.1 It is possible to distinguish certain states of a system by means of a

single POVM which could not be distinguished by a single projective measurement.

Suppose we have a qubit which is in one of the following two non-orthogonal states,

expressed as density matrices:

ρ1 =





1 0

0 0



 or ρ2 =
1

2





1 1

1 1



 .(1)

No projective measurement can distinguish these two states in the following sense:

there exist no projective measurement of which a particular outcome reveals with

certainty the initial state. On the other hand, the POVM

E2 = α





1 −1

−1 1



 E1 = 2α





0 0

0 1



 E3 = 1H − E1 − E2
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enables to distinguish these two states: observing E1 reveals that the initial state

was ρ1 while observing E2 reveals that it was ρ2.

2 Abstractly defined mixed states, CPMs and projec-

tive measurements

For the basic definitions of †-compact categories and their interpretation as se-

mantics for quantum mechanics we refer to the existing literature [3,10,19] and

references therein. The connection between such categories and graphical calculi

is in [1,4,5,12,13,14,15,16,18,19] and references therein. We recall here the CPM-

construction due to Selinger [19] and the coalgebraic characterisation of projective

measurements due to Pavlovic and one of the authors [10]. This coalgebraic char-

acterisation of projective measurements comprises the definition of classical object

which capture the behavioural properties of classical data by making explicit the

ability to copy and delete this data.

2.1 Mixed states and completely positive maps

A morphism f : A → A is positive if there exists an object B and a morphism

g : A → B such that f = g† ◦ g. Graphically this means that we have the following

decomposition:

g† AfA A = gA

B

A morphism f : A⊗A∗ → B ⊗B∗ is completely positive if there exists an object C

and morphisms g : A ⊗ C → B and/or h : A → B ⊗ C such that f is equal to

and/or

A Bg

g∗
A∗ B∗

C

A B
h

h∗A∗ B∗

C

A mixed state ρ : I ⊗ I∗ → A ⊗ A∗, which is a special case of a completely positive

map, is the name of a positive map:

f A

A∗

A

A∗

g†g
ρ

A

A∗

Name of f Mixed state

positivity

— note that we rely here on the canonical isomorphism I ' I ⊗ I ∗.

Remark 2.1 It is worth noting that this purely multiplicative definition of com-

pletely positive maps (i.e. it relies on tensor-structure alone) incarnates the Kraus

representation [17], where the usual summation is implicitly captured by the in-

ternal trace and/or cotrace on C, i.e. the half-circles in the pictures representing
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completely positive maps.

Given any †-compact category, define CPM(C) as the category with the same

objects as C, whose morphisms f : A → B are the completely positive morphism

f : A ⊗ A∗ → B ⊗ B∗ in C, and with composition inherited from C. As shown in

[19], if C is †-compact then so is CPM(C), and the morphisms of CPM(FdHilb)

are the usual completely positive maps and mixed states. There also is a canonical

‘almost’ embedding of C into CPM(C) defined as

Pure :: f 7→ f ⊗ f∗ .

From now on, we will omit (−)∗ on the objects and (−)∗ on the morphisms in the

“symmetric image” which is induced by the CPM-construction.

2.2 Classical objects

The type we are after for a quantum measurement is

A → X ⊗ A

expressing that we have as input a quantum state of type A, and as output a

measurement outcome of type X together with the collapsed quantum state still

of type A. We distinguish between quantum data A and classical data X by our

ability to freely copy and delete the latter. Hence a classical object 〈X, δ, ε〉 is

defined to be an object X together with a copying operation δ : X → X ⊗ X and

a deleting operation ε : X → I, which satisfy some obvious behavioural constraints

that capture the particular nature of these operations. Let λX : X ' I ⊗ X be the

natural isomorphism of the monoidal structure and let ηX : I → X∗ ⊗ X be the

unit of the †-compact structure for object X.

Theorem 2.2 [10] Classical objects can be equivalently defined as :

(i) special †-compact Frobenius algebras 〈X, δ, ε〉 which realise ηX = δ ◦ ε†, where

speciality means 1X = δ† ◦ δ and the †-Frobenius identity

δ ◦ δ† = (1X ⊗ δ) ◦ (δ† ⊗ 1X)

depicts as

δ†
=

δδ† δ

(ii) special X-self-adjoint internal commutative comonoids 〈X, δ, ε〉, where X-self-

adjointness stands for

δ = (1X ⊗ δ†) ◦ (ηX ⊗ 1X) ◦ λX .

In particular do we have self-duality of X i.e. we can choose X ∗ := X, and also δ

and ε prove to be self-dual i.e. δ∗ = δ and ε∗ = ε.
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2.3 Coalgebraically defined projective measurements

Classical objects, being internal commutative comonoids, canonically induce com-

mutative comonads, so we can consider the Eilenberg-Moore coalgebras with respect

to these. This results in the following characterization of quantum spectra as the

X-self-adjoint coalgebras for those comonads. Given a classical object 〈X, δ, ε〉, a

projector-valued spectrum is a morphism P : A → X ⊗ A which is X-complete

i.e. (ε ⊗ 1A) ◦ P = λA, and which also satisfies

A
P - X ⊗ A A

P - X ⊗ A

and

X ⊗ A

P

?

δ ⊗ 1A

- X ⊗ X ⊗ A

1X ⊗P

?
I ⊗ A

'

?

ηX ⊗ 1A

- X ⊗ X ⊗ A

1X ⊗P†

6

to which we respectively refer as X-idempotence and X-self-adjointness.

Remark 2.3 It is most definitely worth noting that X-idempotence exactly incar-

nates von Neumann’s projection postulate, in a strikingly resource-sensitive fashion:

repeating a quantum measurement has the same effect as merely copying the data

obtained in the first measurement.

As shown in [10], in FdHilb these projector-valued spectra are in bijective corre-

spondence with the usual projector spectra defined in terms of self-adjoint linear

operators. In particular, the classical object
〈

C
⊕n , | i〉 7→ | ii〉 , | i〉 7→ 1

〉

yields the projector spectra of all n-outcome measurements on a Hilbert space of

dimension k ≥ n, where X-idempotence assures projectors to be idempotent (P2
i =

Pi) and mutually orthogonal (Pi ◦Pj 6=i = 0), X-self-adjointness assures them to be

self-adjoint (P†
i = Pi), and X-completeness assures

∑i=n
i=1 Pi = 1H i.e. probabilities

arising from the Born-rule add up to 1.

Given this representation theorem, and the fact that such a projector-valued

spectrum already admits the correct type of a quantum measurement, one might

think that projector-valued spectra are in fact quantum measurements. Unfortu-

nately this is not the case: a projector-valued spectrum preserves the relative phases

encoded in the initial state. In other words, the off-diagonal elements of the density

matrix of the initial state expressed in the measurement basis do not vanish. But

this can be easily fixed. In [10] it was shown that these redundant phases can be

eliminated by first embedding C into CPM(C) and then post-composing the image

P⊗P∗ of a projector-valued spectrum P under Pure with 1A⊗Decohere⊗1A where

Decohere := (1X ⊗ η
†
X ⊗ 1X) ◦ (δX ⊗ δX) : X ⊗ X → X ⊗ X

or, graphically,

δ

δ

X

X
X

X
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Note that Decohere is indeed a morphism in CPM(C). One also verifies that

equivalently one can set Decohere = δ ◦ δ†. Conclusively, a projective measurement

is a composite

M := (1A ⊗ Decohere ⊗ 1A) ◦ (P ⊗ P∗)

where X carries a classical object structure and P is a corresponding projector-

valued spectrum, and is of type A → X ⊗ A in CPM(C). Note that such a fully

comprehensive compositional presentation of a projective quantum measurement is

not provided in the standard literature.

We will slightly relax this measurement notion by dropping X-completeness,

something which is quite standard in quantum information literature where rather

than
∑

i Fi = 1H one regularly only requires
∑

i Fi ≤ 1H for POVMs. The same

relaxation applies to our definition of projector-valued spectra.

3 Abstract POVMs

In the same vein as the notions of X-self-adjointness, X-idempotence, and also X-

unitarity introduced in [10], we now define the appropriate generalisations of scalars,

their inverses, and positivity of morphisms.

Definition 3.1 Given a classical object 〈X, δ, ε〉, an X-scalar is a morphism f : I →

X. An X-scalar t : I → X is an X-inverse of s : I → X iff, setting λI : I ' I ⊗ I,

we have

δ† ◦ (s ⊗ t) ◦ λI = ε† .

In FdHilb X-scalars are n-tuples of complex numbers. Since δ† : X ⊗ X → X

‘compares’ outcomes (cf. Dirac’s delta-function) an X-scalar’s X-inverse in FdHilb

is the n-tuple consisting of the component-wise inverses to the given n-tuple. In our

context, X-scalars in particular arise when tracing out A in a morphism f : A →

A⊗X, yielding the X-scalar TrA
I,X(f) : I → X. Graphically an X-scalar represents

as

s X

Definition 3.2 Given a classical object 〈X, δ, ε〉 a morphism f : A → A ⊗ X is

X-positive if there exists a morphism g : B → A ⊗ X such that

δ
X

fA

X

A

= gA A

X

B
g

X

In the second picture, the trapezoid with the corner pointing to the left indicates

that the morphism it represents is equipped with the dagger as compared to the

one with the corner pointing to the right — this graphical notation will be reused

in what follows.

From now on, we will work within CPM(C). Classical objects will however

always be defined in C, and then embedded in CPM(C) via Pure.

16



Coecke and Paquette

Definition 3.3 Let 〈X, δ, ε〉 be a classical object. A POVM on a system of type A

which produces outcomes in X is a morphism

satisfying

X

X

=
δ

δ

X

X

f

f

A

A A

A

A

A

δ

δ

f

f

A

A
A

A

and for which f ∈ C(A,X ⊗ A) is X-positive.

Hence, within CPM(C) the type of such a POVM is indeed A → X.

Theorem 3.4 In the category FdHilb the abstract POVMs of Definition 3.3 ex-

actly coincide with the assignments ρ 7→
∑

i Tr(fiρf
†
i )|i〉〈i| corresponding to POVMs

defined in the usual manner (cf. Section 1).

Proof. Consider a POVM as in Definition 3.3. In FdHilb classical objects are of

the form C
⊕n and induce canonical base vectors | i〉 : C → C

⊕n. Set

f̂i := (〈i | ⊗ 1A) ◦ f : A → A and fi := (| i〉〈i | ⊗ 1A) ◦ f : A → X ⊗ A .

In particular do we have f =
∑i=n

i=1 fi. Hence we can rewrite the POVM as

trA
[

Decohere ◦
(

∑

i

fi ⊗
∑

j

fj∗

)

◦ −
]

= trA
[

Decohere ◦
∑

i,j

(fi ⊗ fj∗) ◦ −
]

= trA
[

∑

i

(fi ⊗ fi∗) ◦ −
]

.

Passing from CPM(C) to standard Dirac notation, i.e. from | i〉⊗ | i〉∗ to | i〉〈i | and

from (f ⊗ f∗) ◦ − to f(−)f †, also using fi = (| i〉 ⊗ 1A) ◦ f̂i, we obtain
∑

i

Tr(f̂i(−)f̂ †
i )|i〉〈i|

which is the intended result. Finally, the abstract normalisation condition tells us

that indeed f † ◦ f = 1A. The converse direction constitutes analogous straightfor-

ward translation into the graphical language. 2

Theorem 3.5 [Abstract Naimark theorem] Given an abstract POVM, there

exists an abstract projective measurement on an extended system which realizes this

POVM. Conversely, each abstract projective measurement on an extended system

yields an abstract POVM.

Proof: We need to show that there exists a projective measurement h : C ⊗ A →

C ⊗A⊗X in C together with an auxiliary input ρ : I → C in CPM(C) such that

they produce the same probability as a given POVM defined via f : A → A⊗X, as

in Definition 3.3, provided we trace out the extended space after the measurement.

Graphically this boils down to
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δ

δ

X

X

f

f

A

A A

A

=
δ

δ

X

X

h

h

A
A

A
A

ρ

C

CC

C

auxiliary
input

projective
measurement

Trace

i.e. an equality between two morphisms of type A → X in CPM(C). To this end

let

hA A

CC

X

A

C

g

δ†

t

A

C

X

g
:=

where f = g† ◦ g by X-positivity as in Definition 3.2 (we will consider g to be fixed

for the reminder of the proof), where t :=
(

TrA(f)
)−1

is an X-scalar, 5 and where

the δ† with three input wires is (1X ⊗δ†)◦δ† — which is meaningful by associativity

of the comultiplication. Let

C

g

δ† t

A
C

:=

g

C
A

X

C

ρ

We now check X-idempotence of h. We have

hA

C

X

A

C

g

δ†

t

g

≡

g

δ†

t

A

C

X

g

X

C

A

X

X

h A

C

X

5 It was observed by Pavlovic and one of the authors that every †-compact category C admits a universal
localization LC together with a †-compact functor C → LC, which is initial for all †-compact categories
with †-compact functors from C, and where a †-compact category is local iff all of its positive scalars are
either divisors of zero, or invertible, where zero is multiplicatively defined in the obvious manner. These
considerations extend to X-scalars. This result will appear in a forthcoming paper.
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Via X-positivity of f , the pale square on the previous picture becomes δ ◦ s where

s := TrA(f) is an X-scalar which is inverse to the X-scalar t. Using the cancellation

of relative inverse X-scalars, the fact that δ is a factor of ηX , X-self-adjointness of

δ, and Frobenius law, one obtains the following equality between the pale squares

below

A

C

δ†

t

g g

δ†

t

A

C

X

XX

δs
= A

C

g g

δ†

t

A

C

X δ
X

X

so we indeed obtain X-idempotence for h. It should be obvious that h is also X-self-

adjoint by construction, so h defines a (not necessarily X-complete) projector-valued

spectrum, and hence defines a projective measurement by adjoining the Decohere-

morphism. Next we show that this projective measurement indeed realizes the given

POVM when feeding-in the mixed state ρ, as defined above, to its C-input, and when

tracing-out the A-output. In the following, we will ignore the Decohere-morphism

since, as we will see later, it will cancel as it is idempotent. Now, in

A

C

g

δ†

t

A

C

X

g

g

δ† t

A

g

C

A

X

A
g

δ†
t

A

C

X

g

the pale square is δ ◦ s by X-positivity of f . Hence we then obtain

A

C

δ†

t
X

g

g

δ† t

A

g

C

A

X

A

δ†
t

X

g

s δ

Via an obvious graph isomorphism we get
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A

δ†

t
X

g

δ† s

A

δ†
t

X

g

s δ

g

g

A

A

C

C

X

X

Again, by X-positivity of f , we obtain

A

δ†

t
X

δ† s

A

δ†
t

X

s δ

f

f

A

A

X

Xδ

δ

The pale square in the previous picture reduces to the Decohere-morphism using

the Frobenius law several times, cancellation of relative inverse X-scalars, etc. Re-

adjoining the Decohere-morphism which we omitted, which now cancels out by

Decohere’s idempotence, we finally obtain

δ

δ

X

X

f

f

A

A A

A

Conversely, we need to show that each projective measurement on an extended

system yields a POVM. A projector-valued spectrum is X-positive since its X-

idempotence and X-self-adjointness yield

A
P

δ

A

X

X

=

A
P

A

X

X

P
=

A
P

A

XX
P

Next, observe that for an X-complete projector-valued spectrum we always have
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P† ◦ P = 1A since

=

A

X

PP
AA

A

PP
AA

εδ

and by X-self-adjointness of P and δ we get

=

A

X

PP
AA

δ† ε

A
P

A

ε
= A

where the first equality uses X-idempotence of P and δ† ◦ δ = 1A. The second

equality is obtained from the definition of X-completeness. Now, when considering

a projective measurement on an extended system, using this fact together with

δ† ◦ δ = 1X we obtain

δ

C

P

P

A

A

C

C

A

A

=

A

A

C
δ

thence satisfying the normalization condition up to a C-dependent scalar. The

POVM which we obtain is

δ

δ

C

X

P

P

A

A

C

C

A

A

X

what completes the proof. 2

Remark 3.6 The more complicated manipulations in the above proof concern clas-

sical data, while the quantum data manipulations are quite canonical. The fact that

the classical data manipulations are sophisticated is due to the explicit resource-

sensitive account on classical data.
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Remark 3.7 While POVMs are not concerned with the state after the measure-

ment, our analysis does produce an obvious candidate for non-destructive gener-

alised measurements, sometimes referred to as PMVMs in the literature [11]. We

postpone a discussion to forthcoming writings.

Remark 3.8 Notice the delicate role which X-completeness and normalisation of

the POVMs plays in all this, on which, due to lack of space, we cannot get into.

We postpone this discussion to an extended version of the present paper, which is

forthcoming.
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