
QPL 2006 Preliminary Version

Quantum data and control made easier

Michael Lampis1 ,2 Kyriakos G. Ginis3

Nikolaos S. Papaspyrou4

School of Electrical and Computer Engineering
National Technical University of Athens

Athens, Greece.

Abstract

In this paper we define nQML, a functional quantum programming language that follows the “quantum
data and control” paradigm. In comparison to Altenkirch and Grattage’s QML, the control constructs
of nQML are simpler and can implement quantum algorithms more directly and naturally. We avoid the
unnecessary complexities of a linear type system by using types that carry the address of qubits in the
quantum state. We provide a denotational semantics over density matrices and unitary transformations,
inspired by Selinger’s semantics for QPL. Our semantics leads naturally to an interpreter for nQML, written
in Haskell.

Keywords: Functional quantum programming language, type system, denotational semantics.

1 Introduction

In the years following the discovery of Shor’s factoring algorithm [11] and Grover’s

algorithm for database search [5] the field of quantum computations has attracted

much scientific interest. Unlike classical algorithms, quantum algorithms are almost

invariably studied at a low level, involving quantum circuits and their properties.

The fact that reasoning about quantum circuits is no easier than reasoning about

their classical counterparts has given rise to quantum programming languages, that

is, languages that allow programmers to implement quantum algorithms and make

use of the added power of the quantum computational model, while respecting its

special restrictions. In this paper we present such a language named nQML.

Our main focus in the design of nQML is to give programmers sufficient expres-

sive power to implement quantum algorithms easily, while preventing them from

1 Research supported in part by the European Social Fund (75%) and the Greek Ministry of Education
(25%) through grant “Pythagoras” of the Operational Programme on Education and Initial Vocational
Training.
2 Email: mlampis@cs.ntua.gr
3 Email: kyrginis@softlab.ntua.gr
4 Email: nickie@softlab.ntua.gr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:mlampis@cs.ntua.gr
mailto:kyrginis@softlab.ntua.gr
mailto:nickie@softlab.ntua.gr

Lampis, Ginis, Papaspyrou

breaking the rules of quantum computation. nQML is a high-level functional lan-

guage based on the concept of “quantum data and control”. It includes constructs

which allow any unitary transformation to be expressed as a program in nQML

quite naturally, more or less using the same notation that is used by the designers

of quantum algorithms. It also permits quantum measurements to be carried out

at any point during the execution of a program.

The relative ease of use comes at the cost of putting aside a number of important

practical issues, such as the existence of imperfect quantum hardware, the need for

quantum error correction and the fact that every quantum program will eventually

have to be implemented as a quantum circuit using only a finite set of quantum gates

and, therefore, some of the unitary transformations that nQML allows will have to

be approximated. Similar problems were a source of concern for the founders of

the classical programming model many decades ago. Fortunately they have been

resolved and their solutions have been abstracted in such a way that people who

use modern high-level programming languages do not need to know anything about

them. We believe that the same can and must be done for the quantum program-

ming languages of the future and adopt the approach that such issues should be

tackled not by the designer and users of a quantum programming language, but by

the architect of a quantum computer, the designer of its operating system and, to

a lesser extent, the designer of the compiler.

nQML admits a simple type system and denotational semantics. By simple,

we mean that both use structures and techniques that are typical in the study

of classical programming languages of similar size and complexity. They should

therefore be easily accessible to readers with a basic knowledge of programming

language semantics and an elementary understanding of the quantum computation

model. The main novelty of nQML’s type system is that the type of a quantum

expression conveys information which reveals the exact qubits of the quantum state

in which the expression’s value resides. Qubit aliasing is allowed in such a way that

the “no cloning” and “no dropping” principles are not violated. Programmers have

the look-and-feel of a classical programming language, without linearity restrictions.

The denotational semantics of nQML is based on the use of density matrices to

describe quantum states. The meaning of a well-typed nQML program is a function

from density matrices to density matrices and describes the program’s effect on an

arbitrary quantum input state. Well-typed programs which conduct no measure-

ments 5 are also assigned a meaning in the form of a unitary matrix which describes

the transformation they perform on the quantum state. The execution of a nQML

program can be seen as a sequence of steps which affect the quantum state either

by allocating new qubits, by applying unitary transformations to existing qubits or

by measuring existing qubits. Our semantics leads to a straightforward implemen-

tation for nQML in the form of an interpreter written in Haskell. 6 The interpreter,

quite obviously, simulates quantum computations in a classical computer and takes

exponential time.

The rest of the paper is structured as follows. Section 2 discusses related work.

5 In the sequel, such programs will be called “pure” quantum programs, for short.
6 The source code of the interpreter is available from ftp://ftp.softlab.ntua.gr/pub/users/nickie/
papers/nqml06.code.tar.gz .

74

ftp://ftp.softlab.ntua.gr/pub/users/nickie/papers/nqml06.code.tar.gz
ftp://ftp.softlab.ntua.gr/pub/users/nickie/papers/nqml06.code.tar.gz
ftp://ftp.softlab.ntua.gr/pub/users/nickie/papers/nqml06.code.tar.gz
ftp://ftp.softlab.ntua.gr/pub/users/nickie/papers/nqml06.code.tar.gz
ftp://ftp.softlab.ntua.gr/pub/users/nickie/papers/nqml06.code.tar.gz
ftp://ftp.softlab.ntua.gr/pub/users/nickie/papers/nqml06.code.tar.gz

Lampis, Ginis, Papaspyrou

In Section 3 we describe the syntax and semantics of nQML. Section 4 contains a

number of examples, while Section 5 concludes with our final remarks. The appendix

contains the complete formal definition of nQML.

2 Related work

Starting with Knill’s conventions for quantum pseudocode [6], several quantum pro-

gramming languages have been proposed and an excellent survey of the emerging

field can be found in [2]. Among the most notable are Ömer’s QCL, an impera-

tive language with quantum primitives and automatic quantum scratch space man-

agement [7], and Sanders and Zuliani’s qGCL, an extension of Dijkstra’s guarded

command language [8]. Moreover, van Tonder has proposed a λ-calculus for higher-

order quantum programs without measurements [12]. It is not clear however how

this calculus corresponds to lower-level descriptions of quantum computations, such

as quantum circuits.

Selinger’s QPL is a language following the paradigm “quantum data, classical

control” [9]. It is functional in nature, although from a programmer’s point of view

it looks more imperative than functional. QPL allows the programmer to access

both classical and quantum memory and includes high-level features such as loops

and recursion. Program control in QPL is strictly classical and quantum branching

can only be implemented indirectly with appropriate unitary transformations. The

denotational semantics of QPL is given in the form of superoperators on density ma-

trices. A higher-order extension of QPL in the form of a quantum lambda calculus

has also been proposed by Selinger and Valiron [10].

On the other hand, Altenkirch and Grattage’s QML is a functional language

that follows the paradigm “quantum data and control” [1,3,4]. QML comes with a

linear type system which prohibits implicit weakening, which would lead to implicit

measurements and quantum collapse. Variables in QML correspond to wires in the

produced quantum circuit and thus have to be shared implicitly when they are used

in several places in a program so as not to break the “no cloning” rule. The sharing

of wires is also monitored by the linear type system. The semantics of QML assigns

to every well-typed program a quantum circuit. QML’s if ◦ operator implements

the notion of quantum control and is the only available means of performing uni-

tary transformation. The two branches of an if ◦ must be “orthogonal” quantum

expressions, in order to preserve the reversibility of pure quantum computations.

The nature of our nQML is inspired from QML, the main addition being the

quantum transformation construct |e〉 → x, x′. c which will be described in Sec-

tion 3. Its type system, although not linear, is an adaptation of Altenkirch and

Grattage’s type system. The semantics of nQML, however, is very much in the

spirit of Selinger’s denotational semantics for QPL.

3 The language nQML

The complete syntax of nQML is given in the following grammar. It is assumed that

x is a variable identifier and λ is a complex constant. The grammar defines two

syntactic classes. Quantum expressions are denoted by e; they represent quantum

75

Lampis, Ginis, Papaspyrou

programs and their syntax is similar to that of QML. Classical expressions are

denoted by c; they are only needed in the quantum transformation construct |e〉 →
x, x′. c and they can represent two types of information: a structure of classical bits

or a complex number.

e ::= x | { (λ)qfalse + (λ′)qtrue } | let x = e1 in e2

| (e1, e2) | let (x1, x2) = e1 in e2

| if e then e1 else e2 | ifm e then e1 else e2 | |e〉 → x, x′. c

c ::= x | λ | let x = c1 in c2 | (c1, c2) | let (x1, x2) = c1 in c2 | int c

| c1 + c2 | c1 − c2 | c1 ∗ c2 | c1/c2 | cc2
1 | if c then c1 else c2

Variables in nQML are viewed as references to quantum information that is stored

in a global quantum state. There are two types of quantum information: qubits and

products. A new qubit is allocated in the quantum state when the superposition

operator { (λ)qfalse + (λ′)qtrue } is used, in the same way that new objects are

allocated on the heap when a data constructor is used in a functional programming

language. Products are introduced and eliminated with the constructs (e1, e2) and

let (x1, x2) = e1 in e2. nQML also features three control constructs:

• ifm e then e1 else e2: It conducts a measurement on e, which must be of type

qubit. Depending on the result, it executes one of its branches. It is similar to

a classical random branching, based on a toss of a biased coin with probabilities

depending on the state of the qubit being measured.

• if e then e1 else e2: It allows the programmer to perform quantum branching.

If e, which must be of type qubit, is in a classical state, then the effect is what

we would expect from ifm. But if e is in a quantum superposition, the pro-

gram proceeds in a quantum superposition of both branches, most likely creating

entanglement among the qubits of the quantum state.

• |e〉 → x, x′. c: A generic means of expressing any unitary transformation, which

has to be relied upon when a transformation can not be easily broken down to a

series of controlled operations, expressible with if . Its advantage is that, rather

than forcing programmers to precompute and provide the whole unitary matrix

of the transformation, whose size is exponential in the number of qubits that

it affects, it allows them to express that matrix as a complex function of the

input and output state of the transformed qubits. This leads to a succinct and

clear expression of many useful quantum algorithms, such as the quantum Fourier

transform that is described in Section 4.

In quantum pseudocode notation, all unitary transformations can be expressed

in the form:

|i〉 →
2n−1
∑

j=0

f(i, j) |j〉

where f(i, j) is a function of the input state i of the quantum register and its out-

put state j. The construct |e〉 → x, x′. c allows the programmers to use precisely

this natural notation: the classical variables x and x′ denote the register’s input

and output state and the classical expression c denotes the function’s body.

From this notation, if the function f is known, the unitary matrix can be

easily constructed by taking Sj,i = f(i, j). Of course, not all functions f result

76

Lampis, Ginis, Papaspyrou

in unitary matrices and the type system of nQML cannot decide whether the

resulting transformation is indeed unitary. The type system of Altenkirch and

Grattage’s QML is able to do that, at the expense of making the size of the

program exponential and complicating the typing with orthogonality constraints.

3.1 The type system of nQML

There are two kinds of types: quantum types (τ) and classical types (φ). For each

quantum expression, the type system of nQML keeps track of the exact qubits of

the state in which the value of this expression is stored. This information is stored

in the types. It is used to make sure that the same qubit cannot be used twice in

a transformation, thus allowing qubit aliasing without breaking the “no cloning”

rule.

τ ::= qbit[n] | τ1 ⊗ τ2

φ ::= bit | φ1 × φ2 | complex

For example, an expression has type qbit[5] if its value is stored in the 5th qubit of

the state.

For each quantum type τ , we define C(τ) to be the corresponding classical type;

no quantum types correspond to complex. We denote by |C(τ) | the size, in clas-

sical bits, of the classical type corresponding to τ and by qbits(τ) the set of the

state’s qubits that are used by expressions of type τ . For example, qbits(qbit[4] ⊗
qbit[2]) = {2, 4}. A quantum type τ is called pure if its representation uses distinct

qubits. Notice that, in general, |qbits(τ)| ≤ |C(τ) |, the two being equal if and only

if the type τ is pure. A quantum type environment Γ is a mapping of variables

to quantum types and, similarly, a classical type environment ∆ is a mapping of

variables to classical types. Γ|k denotes the environment Γ restricted in such a way

that it does not contain variables whose types use the state’s k-th qubit.

The typing relation for nQML is denoted by Γ;n `α e : τ ;m. More precisely, as

in the type system of Altenkirch and Grattage’s QML, there are two typing relations:

one for pure quantum expressions (i.e. without measurements), denoted by Γ;n `◦

e : τ ;m, and one for arbitrary quantum expressions, denoted by Γ;n ` e : τ ;m. We

refer to both by allowing the superscript α to be either ◦ or empty. As the types

of nQML convey information regarding the position of qubits in the quantum state,

the typing relation is forced to process and propagate such information. In Γ;n `α

e : τ ;m, the natural number n appearing on the left side of the relation stands

for the number of qubits of the original quantum state, before e starts evaluating.

Obviously, for all pairs (x : τx) ∈ Γ it must be qbits(τx) ⊆ {0, . . . n − 1}. The

natural number m appearing on the right side of the relation stands for the number

of new qubits, that are allocated during the evaluation of e. The final quantum

state after e has been evaluated has n + m qubits and, obviously again, it must be

qbits(τ) ⊆ {0, . . . n + m − 1}.
The typing rules for nQML follow Altenkirch and Grattage’s QML, with the ex-

ception that the type system is not linear and qubit information must be processed.

For example, the typing rule for quantum superposition plans for the allocation of

one new qubit and uses its position in the returned type.

77

Lampis, Ginis, Papaspyrou

|λ|2 + |λ′|2 = 1

Γ;n `◦ { (λ)qfalse + (λ′)qtrue } : qbit[n]; 1
(SUP)

Rules with more than one quantum expression must carefully combine the newly

allocated qubits, e.g.

Γ;n `α e1 : τ1;m1 Γ;n + m1 `α e2 : τ2;m2

Γ;n `α (e1, e2) : τ1 ⊗ τ2;m1 + m2
(PROD)

The most complex of nQML’s typing rules are those for the control constructs.

We explain two of them below. In a quantum branching expression if e then e1 else

e2, the control qubit must not be used in the two branches. This restriction is

necessary to simplify the semantics of if and eliminate the need for orthogonal

branches. Unitary transformations which cannot easily be described as quantum

controlled operations have their own dedicated construct in nQML. Notice also that

the number of newly allocated qubits takes the maximum of the two branches.

Γ;n `α e : qbit[k];m
Γ|k;n + m `◦ e1 : τ ;m1 Γ|k;n + m `◦ e2 : τ ;m2

Γ;n `α if e then e1 else e2 : τ ;m + max(m1,m2)
(IF)

The typing rule for nQML’s new construct |e〉 → x, x′. c is also straightforward.

A unitary transformation is performed on the quantum bits where the value of

expression e is stored. The type τ of this expression must be pure, to obey the “no

cloning” rule. In the classical expression c which determines the contents of the

transformation, the two variables x and x′ are bound to the classical value of the

expression. The type of both is C(τ).

Γ;n `α e : τ ;m pure(τ) x : C(τ), x′ : C(τ) ` c : complex

Γ;n `α |e〉 → x, x′. c : τ ;m
(TRANS)

The typing ∆ ` c : φ of classical expressions presents no difficulties.

3.2 The denotational semantics of nQML

Our denotational semantics for nQML uses density matrices for representing the

quantum state. The semantic domain S(n) ⊂ C
2n×2n

contains density matrices.

The meaning of an arbitrary well-typed expression e with a type derivation Γ;n `
e : τ ;m is a function of type S(n) → S(n+m); it maps an input quantum state of n

qubits to an output quantum state of n+m qubits. Pure quantum expressions that

perform no measurements can be assigned unitary transformations as meanings. We

denote by T(n) ⊂ C
2n×2n

the domain of unitary transformation matrices. If e is a

well-typed pure quantum expression with a type derivation Γ;n `◦ e : τ ;m, then

its meaning is a unitary transformation matrix of type T(n + m). The semantics

of embedding pure quantum expressions in impure quantum expressions is given

below. The tensor product of A : S(n) with the matrix ∆m appropriately expands

the state with m new qubits which are initialized with zeroes.

EMB: [[Γ;n ` e : τ ;m]](A) = T (A ⊗ ∆m)T ∗

where T = [[Γ;n `◦ e : τ ;m]]

The use of a variable has no effect on the state, as variables are just references. How-

ever, superpositions extend the state by allocating a new qubit and appropriately

78

Lampis, Ginis, Papaspyrou

initializing it.

VAR: [[Γ;n `◦ x : τ ; 0]] = In

SUP: [[Γ;n `◦ { (λ)qfalse + (λ′)qtrue } : qbit[n]; 1]] =

In ⊗





λ λ′

λ′ −λ





The semantics of the let construct, product introduction and elimination is straight-

forward and very similar. In each of them, evaluation begins with the evaluation of

e1 and continues with the evaluation of e2 on the new state. The impure cases are

very similar. 7

LET ◦: [[Γ;n `◦ let x = e1 in e2 : τ ;m1 + m2]] = T2 (T1 ⊗ Im2)

where T1 = [[Γ;n `◦ e1 : τ1;m1]]

T2 = [[Γ, x : τ1;n + m1 `◦ e2 : τ ;m2]]

The case of if is slightly more complicated. Evaluation begins with the condi-

tion. The matrices that correspond to the two branches are calculated and their

(inexistent) effect on the control bit is removed by using the auxiliary function

except. Then, the two expressions are executed conditionally, with e as the control

qubit. The impure case is again very similar.

IF ◦: [[Γ;n `◦ if e then e1 else e2 : τ ;m + max(m1,m2)]] =

Tc (T ⊗ Imax(m1 ,m2))

where T = [[Γ;n `◦ e : qbit[k];m]]

T1 = [[Γ|k;n + m `◦ e1 : τ ;m1]]

T2 = [[Γ|k;n + m `◦ e2 : τ ;m2]]

T ′
1 = except(k, T1) ⊗ Imax(m1,m2)−m1

T ′
2 = except(k, T2) ⊗ Imax(m1,m2)−m2

Tc = cond(k, T ′
1, T

′
2)

Surprisingly, the measuring conditional ifm is more straightforward. The condition

is evaluated and then the corresponding qubit is measured. The auxiliary function

measure returns the two density matrices that correspond to collapsing a qubit to

a classical state. Then the two branches are combined. Each branch is evaluated on

the corresponding result state of the measurement and their sum is the total result.

IFM : [[Γ;n ` ifm e then e1 else e2 : τ ;m + max(m1,m2)]](A) =

B1 ⊗ ∆max(m1,m2)−m1
+ B2 ⊗ ∆max(m1 ,m2)−m2

where B = [[Γ;n ` e : qbit[k];m]](A)

(Bt, Bf) = measure(k,B)

B1 = [[Γ;n + m ` e1 : τ ;m1]](Bt ⊗ ∆m1)

B2 = [[Γ;n + m ` e2 : τ ;m2]](Bf ⊗ ∆m2)

Finally, in the semantics of |e〉 → x, x′. c the described unitary transformation

C is computed. As C only applies to the qubits used by e, it must be properly

expanded to apply to the complete state.

7 It can easily be proved that the semantics of pure and impure quantum expressions is consistent with the
embedding rule. For example, the meaning is the same if EMB is applied separately to two pure expressions
and then PROD is applied to the result, or if EMB is applied once to the result of PROD.

79

Lampis, Ginis, Papaspyrou

TRANS ◦: [[Γ;n `◦ |e〉 → x, x′. c : τ ;m]] = Tc T

where Tc = expand(n, qbits(τ), C)

T = [[Γ;n `◦ e : τ ;m]]

Cj,i = [[x : C(τ), x′ : C(τ) ` c : complex]](ρ)

where ρ = ρ0{x 7→ valτ (i)}{x′ 7→ valτ (j)}
for all 0 ≤ i, j < 2k, where k = |qbits(τ)|

Again, the semantics of classical expressions is standard and presents no difficulty.

4 Examples

We now present a few example nQML programs of varying complexity. We start with

two useful operators in quantum programming: not and had, standing respectively

for quantum negation and the Hadamard transformation. Both can be applied to

any expression q of type qbit[n].

not(q) ≡ |q〉 → x, x′. if x′ = x then 0 else 1

had(q) ≡ |q〉 → x, x′. if x then (if x′ then − 1√
2

else 1√
2
) else 1√

2

These simple transformations may seem a bit awkward at first but now that we

have defined them we can easily use them in conjunction with the quantum condi-

tional construct to define more complex transformations. For example, controlled

quantum negation of p by q can be defined as:

cnot(q, p) ≡ if q then not(p) else p

where not(p) is defined as above.

This leads us to our first nQML program: an implementation of Deutsch’s algo-

rithm. In this algorithm we are presented with a black box classical one-bit boolean

function and we want to decide whether it is balanced, in which case we return

1, or constant, in which case we return 0. We assume that the unknown function

is somehow included in our program and we write f(q) for the application of that

function to a quantum parameter q. By using the definition of had and not given

above, we arrive to the following program.

deutsch(f) ≡ let (i, j) = ({ (1√
2
)qfalse + (1√

2
)qtrue },

{ (1√
2
)qfalse + (− 1√

2
)qtrue }) in

let r = if f(i) then not(j) else j in

had(i)

The program’s result is stored in variable i. This variable is used as the first operand

of our branching operator, after f is applied to it. When f is a constant function

and therefore f(i) has a classical value, i will be unaffected by the execution of the

branching and its result after the Hadamard transform will be 0. When, however,

f is balanced, i.e. it is the identity or the negation function, even though its

application will have no direct effect on i, the use of i as a control bit for j’s

negation means that the two variables interact non-classically.

Let us now see a few more examples that demonstrate the power of |e〉 → x, x′. c.
Addition of a constant to a n-bit quantum register modulo 2n, which is typically

denoted by |r〉 → |r + c〉 in quantum pseudocode, can be implemented as:

80

Lampis, Ginis, Papaspyrou

add(r, c) ≡ |r〉 → x, x′. if intx′ = intx + c then 1 else 0

Any other permutation of base states can easily be implemented in a similar manner.

The implementation of the quantum Fourier transform for n qubits contained in

register r is:

fourier(r, n) ≡ |r〉 → x, x′. 1/2n ∗ e2∗π∗i∗x∗x′/2n

which is derived in a straightforward way from the transform’s definition. In Selin-

ger’s QPL, one can do the same by applying the unitary matrix S corresponding

to the quantum Fourier transform to the quantum register r, using the construct

r ∗=S. However, unless some sophisticated language is used in combination with

QPL to represent unitary transformations, the programmer has to use a precalcu-

lated S and, as its size is 2n × 2n, the size of the program increases exponentially.

The same is true in the case of Altenkirch and Grattage’s QML, where the trans-

form can be implemented by a tree of height n containing nested if ◦ branches; the

size of the program is again exponential in n.

As a last example, let us see an implementation of Grover’s fast database search.

Assuming that c denotes the value we are searching for, we first need to implement

the query and diffusion operators.

query(q) ≡ |q〉 → x, x′. if x = x′

then (if intx = c then − 1 else 1)

else 0

diffusion(q, n) ≡ |q〉 → x, x′. if x = x′ then − 1 + 2/2n else 2/2n

Let us consider the most simple application of Grover’s algorithm: searching in a

space of size 4 (n = 2 qubits). Even though O(
√

n) applications of the two operators

are generally needed to obtain high probability, in this special case one application

is enough to produce the correct result with certainty:

grover ≡ let q1 = { (1√
2
)qfalse + (1√

2
)qtrue } in

let q2 = { (1√
2
)qfalse + (1√

2
)qtrue } in

let qs = (q1, q2) in

diffusion(query(qs), 2)

Assuming that the element we were looking for was c = 2, the Haskell interpreter

that implements our semantics produces the following state (density matrix) of two

qubits:
















0.0 :+ 0.0 0.0 :+ 0.0 0.0 :+ 0.0 0.0 :+0.0

0.0 :+ 0.0 0.0 :+ 0.0 0.0 :+ 0.0 0.0 :+0.0

0.0 :+ 0.0 0.0 :+ 0.0 0.9999999999999997 :+ 0.0 0.0 :+0.0

0.0 :+ 0.0 0.0 :+ 0.0 0.0 :+ 0.0 0.0 :+0.0

















where α :+β is Haskell’s notation for the complex number α + βi. From it, we can

easily verify that the correct answer was found: the register qs is in the classical

state |10〉, allowing for numerical errors.

81

Lampis, Ginis, Papaspyrou

5 Conclusion

Quantum programming is today more or less at the same point in its history as

classical programming was in the 1940s. The hardware is non existent or faulty.

The semantics of quantum programming languages is understood either at a very

low level of abstraction, using quantum gates and circuits, or at a very high level of

abstraction, using tensor products in categories of Hilbert spaces. One thing that

is different, though, is our experience of more than half a century in the theory and

practice of classical programming languages. It is this experience that must be put

into work if, sometime in the future, quantum programming languages are going

to be what classical programming languages are today. Quantum programming

must exploit the advantages of the quantum computational model, putting aside its

peculiarities and insignificant details, so that programmers can add two “quantum

integers” and obtain another “quantum integer” without, for example, having to

think about the reversibility of this computation.

It can be argued that our work takes the “quantum data and control” paradigm a

very small step further towards simplicity. We have defined nQML, a new functional

quantum programming language, inspired by Altenkirch and Grattage’s QML and

following the “quantum data and control” paradigm. The type system of nQML

keeps track of the use of qubits in expressions and avoids the complexities of linear

type systems. Its semantics is inspired by Selinger’s semantics for QPL. It is a

simple denotational semantics with density matrices and unitary transformations

as the semantic domains, which leads naturally to a simple implementation, in the

form of an interpreter written in Haskell. Furthermore, the |e〉 → x, x′. c construct

allows quantum algorithms to be implemented in a more direct and natural way.

References

[1] Altenkirch, T. and J. Grattage, A functional quantum programming language, in: Proceedings of the
20th Annual IEEE Symposium on Logic in Computer Science, 2005, pp. 249–258.

[2] Gay, S. J., Quantum programming languages: Survey and bibliography, Mathematical Structures in
Computer Science 16 (2006), to appear.

[3] Grattage, J. and T. Altenkirch, A compiler for a functional quantum programming language (2005),
manuscript submitted for publication.

[4] Grattage, J. and T. Altenkirch, QML: Quantum data and control (2005), manuscript submitted for
publication.

[5] Grover, L. K., A fast quantum mechanical algorithm for database search, in: Proceedings of the 28th
Annual ACM Symposium on the Theory of Computing, Philadelphia, PA, 1996, pp. 212–219.

[6] Knill, E., Conventions for quantum pseudocode, Technical Report LAUR-96-2724, Los Alamos National
Laboratory (1996).

[7] Ömer, B., “Structured Quantum Programming,” Ph.D. thesis, Institute of Information Systems,
Technical University of Vienna (2003).

[8] Sanders, J. W. and P. Zuliani, Quantum programming, in: Proceedings of the 5th International
Conference on Mathematics of Program Construction, Lecture Notes in Computer Science 1837 (2000),
pp. 80–99.

[9] Selinger, P., Towards a quantum programming language, Mathematical Structures in Computer Science
14 (2004), pp. 527–586.

[10] Selinger, P. and B. Valiron, A lambda calculus for quantum computation with classical control, in:
Proceedings of the 7th International Conference on Typed Lambda Calculi and Applications (TLCA
2005), Lecture Notes in Computer Science 3641 (2005), pp. 354–368.

82

Lampis, Ginis, Papaspyrou

[11] Shor, P. W., Polynomial time algorithms for prime factorization and discrete logarithms on a quantum
computer, SIAM Journal on Computing 26 (1997), pp. 1484–1509.

[12] van Tonder, A., A lambda calculus for quantum computation, SIAM Journal on Computing 33 (2004),
pp. 1109–1135.

A Formal definition of nQML

A.1 Syntax

e ::= x | { (λ) qfalse + (λ′)qtrue } | let x = e1 in e2

| (e1, e2) | let (x1, x2) = e1 in e2

| if e then e1 else e2 | ifm e then e1 else e2 | |e〉 → x, x′. c

c ::= x | λ | let x = c1 in c2 | (c1, c2) | let (x1, x2) = c1 in c2 | int c
| c1 + c2 | c1 − c2 | c1 ∗ c2 | c1/c2 | cc2

1 | if c then c1 else c2

A.2 Typing

Types: quantum and classical

τ ::= qbit[n] | τ1 ⊗ τ2

φ ::= bit | φ1 × φ2 | complex

From quantum to classical types

C(qbit[n]) = bit

C(τ1 ⊗ τ2) = C(τ1) × C(τ2)

Size of classical types

|C(qbit[n]) | = 1
|C(τ1 ⊗ τ2) | = |C(τ1) | + |C(τ2) |
|complex | = undefined

Qubits used by a quantum type

qbits(τ) : P(N)
qbits(qbit[n]) = {n}
qbits(τ1 ⊗ τ2) = qbits(τ1) ∪ qbits(τ2)

Pure quantum types

pure(qbit[n])

pure(τ1) pure(τ2) qbits(τ1) ∩ qbits(τ2) = ∅
pure(τ1 ⊗ τ2)

Type environments: quantum and classical

Γ : a finite set of pairs of the form (x : τ)
∆ : a finite set of pairs of the form (x : φ)

Γ|k = {(x : τ) ∈ Γ | k 6∈ qbits(τ)}

Typing relation for quantum expressions Γ;n `α e : τ ;m

where α is empty or ◦

Γ; n `◦ e : τ ;m

Γ;n ` e : τ ;m
(EMB)

(x : τ) ∈ Γ

Γ;n `◦ x : τ ; 0
(VAR)

|λ|2 + |λ′|2 = 1

Γ; n `◦ { (λ) qfalse + (λ′)qtrue } : qbit[n]; 1
(SUP)

Γ; n `α e1 : τ1;m1 Γ, x : τ1;n + m1 `α e2 : τ ; m2

Γ; n `α let x = e1 in e2 : τ ; m1 + m2
(LET)

Γ; n `α e1 : τ1; m1 Γ;n + m1 `α e2 : τ2;m2

Γ; n `α (e1, e2) : τ1 ⊗ τ2; m1 + m2
(PROD)

83

Lampis, Ginis, Papaspyrou

Γ;n `α e1 : τ1 ⊗ τ2;m1 Γ, x1 : τ1, x2 : τ2;n + m1 `α e2 : τ ;m2

Γ; n `α let (x1, x2) = e1 in e2 : τ ;m1 + m2
(LETPROD)

Γ; n `α e : qbit[k];m
Γ|k;n + m `◦ e1 : τ ;m1 Γ|k ;n + m `◦ e2 : τ ;m2

Γ;n `α if e then e1 else e2 : τ ; m + max(m1, m2)
(IF)

Γ; n ` e : qbit[k];m Γ;n + m ` e1 : τ ;m1 Γ; n + m ` e2 : τ ; m2

Γ; n ` ifm e then e1 else e2 : τ ; m + max(m1,m2)
(IFM)

Γ;n `α e : τ ; m pure(τ) x : C(τ), x′ : C(τ) ` c : complex

Γ; n `α |e〉 → x, x′. c : τ ;m
(TRANS)

Typing relation for classical expressions ∆ ` c : φ

(x : φ) ∈ ∆

∆ ` x : φ
(var)

∆ ` λ : complex
(const)

∆ ` c1 : φ1 ∆, x : φ1 ` c2 : φ

∆ ` let x = c1 in c2 : φ
(let)

∆ ` c1 : φ1 ∆ ` c2 : φ2

∆ ` (c1, c2) : φ1 × φ2
(prod)

∆ ` c1 : φ1 × φ2 ∆, x1 : φ1, x2 : φ2 ` c2 : φ

∆ ` let (x1, x2) = c1 in c2 : φ
(letprod)

∆ ` c : C(τ)

∆ ` int c : complex
(int)

∆ ` c : bit ∆ ` c1 : φ ∆ ` c2 : φ

∆ ` if c then c1 else c2 : φ
(if)

∆ ` c1 : complex ∆ ` c2 : complex op ∈ {+,−, ∗, /, ˆ}
∆ ` c1 op c2 : complex

(op)

A.3 Semantics

Semantic domains

S(n) =
{

A ∈ C2n
×2n | A is a density matrix

}

T(n) =
{

T ∈ C2n
×2n | T is unitary

}

[[∆]] = Πx :Var. [[∆(x)]]

[[bit]] = B

[[φ1 × φ2]] = [[φ1]] × [[φ2]]
[[complex]] = C

Semantics of pure quantum expressions [[Γ; n `◦ e : τ ;m]] : T(n + m)

VAR: [[Γ; n `◦ x : τ ; 0]] = In

SUP: [[Γ; n `◦ { (λ) qfalse + (λ′)qtrue } : qbit[n]; 1]] = In ⊗
(

λ λ′

λ′ −λ

)

LET ◦: [[Γ; n `◦ let x = e1 in e2 : τ ; m1 + m2]] = T2 (T1 ⊗ Im2
)

where T1 = [[Γ;n `◦ e1 : τ1;m1]]
T2 = [[Γ, x : τ1;n + m1 `◦ e2 : τ ;m2]]

PROD ◦: [[Γ; n `◦ (e1, e2) : τ1 ⊗ τ2;m1 + m2]] = T2 (T1 ⊗ Im2
)

where T1 = [[Γ;n `◦ e1 : τ1;m1]]
T2 = [[Γ;n + m1 `◦ e2 : τ2;m2]]

LETPROD ◦: [[Γ; n `◦ let (x1, x2) = e1 in e2 : τ ; m1 + m2]] = T2 (T1 ⊗ Im2
)

where T1 = [[Γ;n `◦ e1 : τ1 ⊗ τ2;m1]]
T2 = [[Γ, x1 : τ1, x2 : τ2;n + m1 `◦ e2 : τ ;m2]]

IF ◦: [[Γ; n `◦ if e then e1 else e2 : τ ;m + max(m1 ,m2)]] =
Tc (T ⊗ Imax(m1,m2))

where T = [[Γ;n `◦ e : qbit[k];m]]
T1 = [[Γ|k; n + m `◦ e1 : τ ;m1]]
T2 = [[Γ|k; n + m `◦ e2 : τ ;m2]]
T ′
1 = except(k, T1) ⊗ Imax(m1,m2)−m1

T ′
2 = except(k, T2) ⊗ Imax(m1,m2)−m2

Tc = cond(k, T ′
1, T ′

2)

84

Lampis, Ginis, Papaspyrou

TRANS ◦: [[Γ; n `◦ |e〉 → x, x′. c : τ ;m]] = Tc T
where Tc = expand(n, qbits(τ), C)

T = [[Γ;n `◦ e : τ ; m]]
Cj,i = [[x : C(τ), x′ : C(τ) ` c : complex]](ρ)
where ρ = ρ0{x 7→ valτ (i)}{x′ 7→ valτ (j)}

for all 0 ≤ i, j < 2k, where k = |qbits(τ)|

Semantics of impure quantum expressions [[Γ;n ` e : τ ;m]] : S(n) → S(n + m)

EMB: [[Γ; n ` e : τ ;m]](A) = T (A ⊗ ∆m) T ∗

where T = [[Γ;n `◦ e : τ ; m]]
LET : [[Γ; n ` let x = e1 in e2 : τ ;m1 + m2]](A) = B2

where B1 = [[Γ;n ` e1 : τ1;m1]](A)
B2 = [[Γ, x : τ1;n + m1 ` e2 : τ ; m2]](B1)

PROD : [[Γ; n ` (e1, e2) : τ1 ⊗ τ2; m1 + m2]](A) = B2

where B1 = [[Γ;n ` e1 : τ1;m1]](A)
B2 = [[Γ;n + m1 ` e2 : τ2; m2]](B1)

LETPROD : [[Γ; n ` let (x1, x2) = e1 in e2 : τ ;m1 + m2]](A) = B2

where B1 = [[Γ;n ` e1 : τ1 ⊗ τ2; m1]](A)
B2 = [[Γ, x1 : τ1, x2 : τ2;n + m1 ` e2 : τ ; m2]](B1)

IF : [[Γ; n ` if e then e1 else e2 : τ ; m + max(m1,m2)]](A) =
Tc (B ⊗ ∆max(m1,m2)) T ∗

c

where B = [[Γ; n ` e : qbit[k];m]](A)
T1 = [[Γ|k; n + m `◦ e1 : τ ;m1]]
T2 = [[Γ|k; n + m `◦ e2 : τ ;m2]]
T ′
1 = except(k, T1) ⊗ Imax(m1,m2)−m1

T ′
2 = except(k, T2) ⊗ Imax(m1,m2)−m2

Tc = cond(k, T ′
1, T ′

2)
IFM : [[Γ; n ` ifm e then e1 else e2 : τ ; m + max(m1,m2)]](A) =

B1 ⊗ ∆max(m1,m2)−m1
+ B2 ⊗ ∆max(m1,m2)−m2

where B = [[Γ; n ` e : qbit[k];m]](A)
(Bt, Bf) = measure(k,B)
B1 = [[Γ;n + m ` e1 : τ ;m1]](Bt ⊗ ∆m1

)
B2 = [[Γ;n + m ` e2 : τ ;m2]](Bf ⊗ ∆m2

)
TRANS : [[Γ; n ` |e〉 → x, x′. c : τ ;m]](A) = Tc B T ∗

c

where Tc = expand(n, qbits(τ), C)
B = [[Γ; n ` e : τ ; m]](A)
Cj,i = [[x : C(τ), x′ : C(τ) ` c : complex]](ρ)
where ρ = ρ0{x 7→ valτ (i)}{x′ 7→ valτ (j)}

for all 0 ≤ i, j < 2k, where k = |qbits(τ)|

Semantics of classical expressions [[∆ ` c : φ]] : [[∆]] → [[φ]]

var: [[∆ ` x : φ]](ρ) = ρ(x)
const: [[∆ ` λ : complex]](ρ) = λ
let: [[∆ ` let x = c1 in c2 : φ]](ρ) = [[∆, x : φ1 ` c2 : φ]](ρ′)

where ρ′ = ρ{x 7→ [[∆ ` c1 : φ1]](ρ)}
prod: [[∆ ` (c1, c2) : φ1 × φ2]](ρ) = ([[∆ ` c1 : φ1]](ρ), [[∆ ` c2 : φ2]](ρ))
letprod: [[∆ ` let (x1, x2) = c1 in c2 : φ]](ρ) =

[[∆, x1 : φ1, x2 : φ2 ` c2 : φ]](ρ′)
where (v1, v2) = [[∆ ` c1 : φ1 × φ2]](ρ)

ρ′ = ρ{x 7→ v1}{y 7→ v2}
int: [[∆ ` int c : complex]](ρ) = codeτ ([[∆ ` c : C(τ)]](ρ))
op: [[∆ ` c1 op c2 : complex]](ρ) =

[[∆ ` c1 : complex]](ρ) op [[∆ ` c2 : complex]](ρ)
if : [[∆ ` if c then c1 else c2 : φ]](ρ) =

{

[[∆ ` c1 : φ]](ρ) , if [[∆ ` c : bit]](ρ) = true

[[∆ ` c2 : φ]](ρ) , if [[∆ ` c : bit]](ρ) = false

Auxiliary functions

In : the identity matrix of size 2n × 2n

∆n : a matrix of size 2n × 2n with all zeroes and a 1 in the top-left corner

except : N × S(n + 1) → S(n)

85

Lampis, Ginis, Papaspyrou

except(0,

(

A O

O A

)

) = A

except(k + 1,

(

A B

C D

)

) =

(

except(k,A) except(k, B)

except(k,C) except(k,D)

)

cond : N × S(n) × S(n) → S(n + 1)

cond(0, T, F) =

(

F O

O T

)

cond(k + 1,

(

TA TB

TC TD

)

,

(

FA FB

FC FD

)

) =

(

cond(k, TA, FA) cond(k, TB , FB)

cond(k, TC , FC) cond(k, TD, FD)

)

measure : N × S(n + 1) → S(n + 1) × S(n + 1)

measure(0,

(

A O

O D

)

) = (

(

O O

O D

)

,

(

A O

O O

)

)

measure(k + 1,

(

A O

O A

)

) = (

(

TA TB

TC TD

)

,

(

FA FB

FC FD

)

)

where (TA, FA) = measure(k,A)
(TB , FB) = measure(k,B)
(TC , FC) = measure(k,C)
(TD , FD) = measure(k,D)

expand : Πn :N. ΠS :P(N). T(|S|) → T(n)
expand(n, S, T) = expa0(n, S, T)

where expan(n, S, T) = T

expak(n,S,

(

A B

C D

)

) =

(

expak+1(n, S,A) expak+1(n, S,C)

expak+1(n,S,B) expak+1(n,S,D)

)

if k < n and k ∈ S
expak(n,S, T) = I1 ⊗ expak+1(n,S, T)

if k < n and k 6∈ S

codeτ : [[C(τ)]] → N

codeqbit[k](b) =

{

1 , if b = true

0 , if b = false

codeτ1⊗τ2
(v1, v2) = 2k codeτ1

(v1) + codeτ2
(v2)

where k = |C(τ2) |

valτ : N → [[C(τ)]]

valqbit[k](n) =

{

true , if n = 1

false , if n = 0

valτ1⊗τ2
(n) = (valτ1

(n/2k), valτ2
(n mod 2k))

where k = |C(τ2) |

86

	Introduction
	Related work
	The language nQML
	The type system of nQML
	The denotational semantics of nQML

	Examples
	Conclusion
	References
	Formal definition of nQML
	Syntax
	Typing
	Semantics

