
QPL 2006 Preliminary Version

Quantum arrows in Haskell

Juliana Kaizer Vizzotto1 Antônio Carlos da Rocha Costa2

Federal University of Rio Grande do Sul, Brazil

Catholic University of Pelotas, Brazil

Amr Sabry3

Indiana University, USA

Abstract

We argue that a realistic model for quantum computations should be general with respect to measurements,
and complete with respect to the information flow between the quantum and classical worlds. We discuss
two alternative models for general and complete quantum computations based on probability distributions
of quantum state vectors and on density matrices with classical outputs. We show that both models can
be structured using a generalization of monads called arrows.

Keywords: Quantum programming, density matrices, probabilities.

1 Introduction

In recent work [13] we established that a general model of quantum computing

(including measurements), based on density matrices and superoperators, is an

instance of a generalization of monads called arrows [5]. That work is strictly

based on quantum data (any classical value must be represented as quantum). The

model cannot express the passage of information between the classical and quantum

worlds.

However, various quantum algorithms are explained in terms of the interchanging

of quantum and classical information 4 . For example, quantum teleportation is a

traditional algorithm which is based on two quantum processes communicating via

classical data. There is interest to consider measurements and the information

flow between quantum and classical processes as essential components of quantum

computations (for instance, see [11,6,9,4,12]).

1 Email: jkv@atlas.ucpel.tche.br
2 Email: rocha@atlas.ucpel.tche.br
3 Email: sabry@indiana.edu
4 By interchanging we mean, for instance, a measurement in the middle of the computation.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:jkv@atlas.ucpel.tche.br
mailto:rocha@atlas.ucpel.tche.br
mailto:sabry@indiana.edu

Vizzotto, Rocha Costa, Sabry

On the other hand, the finding of a representation that is suitable for repre-

senting both the results of unitary transformations and measurement operations

should also be put into perspective, in order to uniformly fit with the requirements

of generality and completeness.

That is, we would like that the same representational framework be able to take

care of both: (1) the task of representing the quantum state resulting from a uni-

tary operation applied to a given quantum state, and (2) the task of representing

the pair of information coming out from a measurement, namely: (2a) that cor-

responding to the measure produced by the measurement (one of the eigenvalues

of the measurement operator), and (2b) the quantum state that results from the

projection imposed on the original quantum state by the measurement (one of the

eigenvectors of the measurement operator).

The main problem introduced by the need of that uniformity is that measure-

ment results (both value and state results) are of a probabilistic kind, needing sets

of possible results for their representation. The usual alternative solution to such

problem is the density matrix formalism.

However, there is a (possibly not minor) conceptual problem in the adoption of

the density matrix formalism, namely: a density matrix is supposed to represent

a set (ensemble) of quantum systems whose probability distribution of states the

density matrix represents; however, from a programming theoretic point of view, one

usually thinks of a quantum algorithm as being performed by one single quantum

system, not an ensemble of quantum systems each possibly behaving in a different

way according to a probability distribution.

We feel that the quantum programmer’s intuition of programming one single

quantum system at a time, while elaborating his algorithms, may happen to be not

appropriately captured by the density matrix formalism. We feel (but we have no

definite argument) that a representation modelled on the usual set-theoretic repre-

sentation of states of non-deterministic machines, adjusted to explicitly represent

the probability of occurrence of each deterministic state, may happen to capture in

a better way the quantum programmer’s intuition.

So, in the paper, we introduce two ways to deal with combined quantum and

classical computations, which are based on different ways of representing states

which result from measurements, one based on density matrices, the other based on

explicit probability distributions over sets of quantum states.

The paper is organised as follows. In Section 2 we introduce indexed monads

and indexed arrows in the context of Haskell. Section 3 briefly reviews our previous

work [13] on modelling superoperators as arrows. We then show two alternative

general and complete models for combined quantum and classical computations

structured as indexed arrows in Section 4. Section 5 concludes.

2 Indexed Monads and Indexed Arrows

The mathematical concept of monads was introduced to computer science by Mog-

gi [7] in the late 1980’s as a way of structuring denotational semantics of pro-

gramming languages. Several different language features, including nontermination,

state, exceptions, continuations, and interaction can be viewed as monads. More re-

118

Vizzotto, Rocha Costa, Sabry

cently, this construction has been internalised in the programming language Haskell

as a tool to elegantly express computational effects within the context of a pure

functional language.

Since the work of Moggi, several natural notions of computational effects were

discovered which could only be expressed as generalisations of monads. Of particular

importance to us is the generalisation of monads known as arrows [5] which is also

internalised in the programming language Haskell. In this section, we briefly discuss

a small variation of these notions in the context of the programming language

Haskell, which we call indexed monads and indexed arrows. Those are the right

notions needed to structure quantum computations.

2.1 Indexed Monads

A monad is used for formulating definitions and structuring notions of computations

(possibly non-functional) in programming languages. In this context, a program,

which features notions of computations, can be viewed as a function from values to

computations. For instance a program with exceptions can be viewed as a function

that takes a value and returns a computation that may succeed or may fail.

More precisely, to understand monadic computations one can consider a value

category C, as a model for functions, and build on top of that, notions of computa-

tion via an operator (endofunctor) T acting on objects of C - i.e., T maps an object

B from C, viewed as the set of values of type τ , to an object TB corresponding to

computations of type τ . Then a program which takes an input of type A, and after

performing a certain computation returns a value of type B, can be identified with

a morphism from A to TB in C [8].

A monad is represented using a type constructor for computations m and two

functions:

return :: forall a.a → m a

>>= ::forall a b.m a → (a → m b)→ m b

The operation >>= (pronounced “bind”) specifies how to sequence computations and

return specifies how to lift values to computations. Note the requirements of forall

in the definitions above. This is because T , as explained above, is an endofunctor

in C. Then, m is a type constructor acting on all objects from the value category.

However, sometimes we want to select some objects (sets) from C to apply the

constructor T . This notion is slightly more general than monads, and it is captured

by the definition of Kleisli structure [2]. Basically, for indexed monads (as we prefer

to call Kleisli structures), the function T does not need be an endofunctor on C.
We can select some objects from C to apply the constructor. This is exactly the

notion we need to model quantum state vectors 5 as monads. The constructor for

a quantum vector can only act over the types which constitute a basis.

Now, the definitions of return and >>= in Haskell should be rephrased as:

return :: forall a.F a ⇒ a → m a

>>= ::forall a b.F a,F b ⇒ m a → (a → m b)→ m b

That is, for all a for which F a holds we can apply the constructor m, and for all

5 That is, a function which associates each basis element with a complex probability amplitude.

119

Vizzotto, Rocha Costa, Sabry

a and b for which F a and F b hold we can apply >>=. Moreover, to construe a

proper monad or indexed monad, the return and �= functions must work together

according to the three monad laws [7].

2.2 Indexed Arrows

To handle situations where monads are inapplicable, Hughes [5] introduced a new

abstraction generalising monads, called arrows. Indeed, in addition to defining a

notion of procedure which may perform computational effects, arrows may have a

static component, or may accept more than one input.

Just as we think of a monadic type m a as representing a computation delivering

an a, so we think of an arrow type a b c as representing a computation with input

of type b delivering a c. Arrows make the dependence on input explicit.

arr :: forall b c.(b → c)→ a b c

(>>>) :: forall b c d .a b c → a c d → a b d

first :: forall b c d .a b c → a (b, d) (c, d)

In other words, to be an arrow, a type a must support the three operations arr, ≫,

and first with the given types. The function arr allows us to lift “pure” functions

to computations. The function ≫ composes two computations. The function first

allows us to apply an arrow in the context of other data.

Observe the requirements of forall in the definitions. They mean that we can

build computations on top of all value functions. However, as with monads, we

want to select some specific value functions. This is the case for quantum functions:

we want to lift simple functions acting on the basis elements to functions acting on

vectors over those basis. Hence we define indexed arrows 6 :

arr :: (I b, I c)⇒ (b → c)→ a b c

(>>>) :: (I b, I c, I d)⇒ a b c → a c d → a b d

first :: (I b, I c, I d)⇒ a b c → a (b, d) (c, d)

The operations for arrows or indexed arrows must satisfy the arrow laws [5],

such that these operations are well-defined even with arbitrary permutations and

change of associativity.

3 Review: Quantum Vectors as Indexed Monads and

Superoperators as Indexed Arrows

3.1 Vectors as Indexed Monads

In this section we quickly review the work presented in [13]. Given a set a rep-

resenting observable (classical) values, i.e. a basis set, a pure quantum state is a

vector a→ C which associates each basis element with a complex probability ampli-

tude. In Haskell, a finite set a can be represented as an instance of the class Basis ,

shown below, in which the constructor basis :: [a] explicitly lists the basis elements.

The basis elements must be distinguishable from each other, which explains the

constraint Eq a on the type of elements:

6 Categorically, the definition of arrows is captured by Freyd-categories [10]. Indexed arrows are indexed
Freyd-categories.

120

Vizzotto, Rocha Costa, Sabry

class Eq a ⇒ Basis a where basis :: [a]

type K = Complex Double

type Vec a = a → K

The type K (notation from the base field) is the type of probability amplitudes.

The monadic functions for vectors are defined as:

return :: Basis a ⇒ a → Vec a

return a b = if a ≡ b then 1.0 else 0.0

(>>=) :: (Basis a,Basis b)⇒ Vec a → (a → Vec b)→ Vec b

va >>= f = λb → sum [(va a) ∗ (f a b) | a ← basis]

return just lifts values to vectors, and bind , given a unitary operator (i.e., unitary

operator) represented as a function a → Vec b, and given a Vec a, returns a Vec b

(that is, it specifies how a Vec a can be turned in a Vec b).

Proposition 3.1 The indexed monad Vec satisfies the required equations for mon-

ads.

Examples of vectors over the set of booleans may be defined as follows:

instance Basis Bool where

basis = [False,True]

qFalse , qTrue, qFT , qFmT :: Vec Bool

qFalse = return False

qTrue = return True

qFT = (1 /
√

2) $∗ (qFalse ‘mplus ‘ qTrue)

qFmT = (1 /
√

2) $∗ (qFalse ‘mminus ‘ qTrue)

The first two are unit vectors corresponding to basis elements; the last two represent

states which are in equal superpositions of False and True. In the Dirac notation,

these vectors would be respectively written as |False〉, |True〉, 1√
2
(|False〉+ |True〉),

and 1√
2
(|False〉− |True〉). The operations $∗, ‘mplus ′, and ‘mminus ′ are the usual

scalar product, sum and subtraction of vectors, respectively.

Unitary operations can also be defined directly, for example:

type Uni a b = a → Vec b

hadamard :: Uni Bool Bool

hadamard False = qFT

hadamard True = qFmT

zgate :: Uni Bool Bool

zgate False = qFalse

zgate True = −1 $∗ qTrue

3.2 Superoperators as Indexed Arrows

Intuitively, density matrices can be understood as a statistical perspective of the

state vector. In the density matrix formalism, a quantum state that used to be

modelled by a vector v is now transformed in a matrix in such a way that the

amplitudes of the state vector turn into a kind of probability distributions over state

vectors.

type Dens b = Vec (b, b)

121

Vizzotto, Rocha Costa, Sabry

Operations mapping density matrices to density matrices are called superopera-

tors:

type Super b c = (b, b)→ Dens c

We represent a superoperator mirroring a big matrix, so mapping values to density

matrices (that is, Super b c ≡ (b, b)→ (c, c)→ K).

Just as the probability effect associated with vectors is a modelled by a indexed

monad because of the Basis constraint, the type Super is modelled by a indexed

arrow because the types include the additional constraint requiring the elements to

form a set of basis values (the definition for arr , >>>, and first for Super are in [13]).

Using this general model of quantum computations structured as arrows we

can elegantly express quantum computations involving measurements. However,

that work is strictly based on quantum data, we can not express algorithms with

combined interactions of quantum and classical operations directly. Yet as noted

in [4,12] a complete model for expressing quantum algorithms should accommodate

both measurements and combined interactions of quantum and classical data.

4 Quantum Programs as Indexed Arrows

Based on the idea that fully expressible languages/models for quantum computation

are supposed to include more than one final measurement operation, that is, they

should accommodate both measurements and combined interactions of quantum and

classical data, in this section we structure two alternative general (involving mea-

surements) and complete (involving both quantum and classical data) approaches

for combined quantum and classical computations as indexed arrows. The first one

is based on a measurement approach for quantum programs. Basically, at each step

(a part) of the density operator representing the global quantum state is measured,

a perspective on the classical measurement results is returned, and the state is left

in a new density operator. The second one is based on probability distributions over

quantum state vectors. Attached to each vector in the distribution there is a list of

classical values - the eigenvalues which are the output of performed measurements.

Essentially, the idea is to model the behavior of a single, well determined quantum

system, where at any time one can express the information flow from the quantum

to the classical level, and vice-versa.

4.1 Programs with Density Operators and Classical Outputs

We present a model for quantum computations based on a measurement approach.

The idea is to have a density operator representing the global quantum state, and

a probability distribution of classical values representing the classical part of the

state. A quantum program acting on this state is interpreted by a special tracing

superoperator, which in the general case traces out part of the state, returning a

classical output, and leaving the system in a new state (possibly in a space with

reduced dimension).

122

Vizzotto, Rocha Costa, Sabry

4.1.1 Programs with Density Matrices

Because the tracing superoperator in general forgets part of the state, we define a

relation between bases which we call Dec (from decomposition):

class (Basis a,Basis b,Basis o)⇒ Dec a b o where

dec :: [a]→ [(b, o)]

specifying that a basis a can be written as (b, o). Then, a quantum program from

a to b, parameterised by i , the type of the input classical probability distribution,

and o, the part to be measured, is represented by a superoperator from a to b,

delivering a classical probability distribution over o.

type DProb c = [(c,Prob)]

type QProgram i o a b = (DProb i , (a, a)) → (DProb o,Dens b)

Note that our quantum programs should satisfy the restriction Dec a b o, and that

DProb i is used in classical operations or quantum operations controlled by classical

data.

As any type can be decomposed by the unit (), and can be decomposed by itself,

and also can be decomposed into one of its parts, we have the following instances:

instance (Basis a)⇒ Dec a a () where

dec [] = []

dec (x : l) = (x , ()) : dec l

instance (Basis a)⇒ Dec a () a where

dec [] = []

dec (x : l) = ((), x) : dec l

instance (Basis a,Basis b)⇒ Dec (a, b) a b where

dec l = l

Any unitary operator can be lifted to a quantum program which traces out ().

uni2qprog :: (Basis a,Basis b,Basis i , Dec a b ())⇒
Lin a b → QProgram i () a b

uni2qprog f (dp, (a1, a2)) =

let d = uni2vec (f a1〉∗〈f a2)

in ([], d)

where uni2vec f = [((a, b), f a b) | (a, b)← basis]

v1〉∗〈v2 = λa1 → [(a2, v1 a1 ∗ conjugate (v2 a2)) |
a2 ← basis]

The function uni2qprog constructs a quantum program, acting on a combined state,

from a unitary operator. The idea is to apply the default construction to build

a superoperator from a unitary transformation. Note that the classical input is

ignored and the classical output is empty: there is no interaction with the classical

world when considering unitary transformations. For instance:

hadamardP :: QProgram i () Bool Bool

hadamardP = uni2qprog hadamard

lifts the unitary operator hadamard to a quantum program acting on a combined

state.

Given, a quantum state over a basis set (a, b), the quantum program trR forgets

the right component, returning a new state over b. The subspace is measured before

being discharged outputting a classical probability distribution over the basis which

123

Vizzotto, Rocha Costa, Sabry

forms that subspace. In this case, the input classical data is just ignored.

trR :: (Basis a,Basis b,Dec (a, b) a b)⇒ QProgram i b (a, b) a

trR (dp, ((a1, b1), (a2, b2))) = let d = if b1 ≡ b2 then return (a1, a2)

else vzero

p = [(b1, 1) | b1 ≡ b2]

in (p, d)

trA :: (Basis a,Basis i ,Dec a () a)⇒ QProgram i a a ()

trA (dp, (a1, a2)) = let d = if a1 ≡ a2 then return ((), ()) else vzero

p = [(a1, 1) | a1 ≡ a2]

in (p, d)

Similarly, the program trA forgets (measures) all quantum state returning only a

classical probability distribution as the result. To construe the classical probability

distribution we consider that any value from the type being measured can appear

in the output quantum state. Hence each value from the basis is attached to the

probability 1. The real probability to appear in the final state is calculate by the

function app below, which given a program and a combined state calculates the new

density matrix and the classical result (if there is some).

app :: (Basis a,Basis b,Basis i ,Basis o,Dec a b o)⇒
QProgram i o a b → (DProb i ,Dens a)→ (DProb o,Dens b)

app p (di , da) = let dbf = [(b, sum [let (po, db) = p (di , a)

p2 = db b

p1 = da a

in p1 ∗ p2 | a ← basis]) | b ← basis]

po = [(o, p1 ∗ p2 ∗ p3) | a ← basis , (b, o)← dec [a],

let (po, db) = p (di , (a, a)),

let p1 = lookup o po,

let p2 = da (a, a),

let p3 = dbf (b, b)]

in (po, dbf)

The output density matrix is calculated by simple matrix multiplication: the su-

peroperator matrix by the input density matrix. Note that the overall operation

may depend of the classical state. The probability distribution of classical values

is calculated by the multiplication of the probability of the observable value in the

operator by the probability of the respective observable value in the input density

matrix. Also we take into account the output density matrix in the calculation as

it may be the case that a unitary operation is applied before the measurement.

4.1.2 Programs with Density Matrices as Indexed Arrows

We define the three functions, arr , >>>, and first , over QProgram i o as follows:

arr :: (Basis b,Basis c,Dec b c ())⇒ (b → c)→ QProgram i () b c

arr = uni2qprog .fun2uni

where fun2uni f = return .f

(>>>) :: (Basis a,Basis b,Basis c, Basis o1,Basis o2,

Dec a b o1,Dec b c o2)⇒
QProgram i o1 a b → QProgram o1 o2 b c → QProgram i o2 a c

124

Vizzotto, Rocha Costa, Sabry

(f >>> g) (dpi , (a1, a2)) = app g (f (dpi , (a1, a2)))

first :: (Basis a, Basis b,Basis c,Basis o,

Dec a b a2,Dec (a, c) (b, c) a2)⇒
QProgram i o a b → QProgram i o (a, c) (b, c)

first p (dpi , ((b1, d1), (b2, d2))) =

let (dc, dpo) = p (dpi , (b1, b2))

vdd = return (d1, d2)

dbd = [(((b1, d12), (b2, d22)), db (b1, b2) dc ∗ vdd (d12, d22)) |
((b1, d12), (b2, d22))← basis]

in (dpo, dbd)

Proposition 4.1 The indexed arrow QProgram i o satisfies the required equations

for arrows.

4.2 Programs with Probability Distributions of Quantum Vectors States

The idea is to have a combined state, where the classical part is as before (i.e. a

probability distribution of classical values), and the quantum part is represented by

a explicit probability distribution over quantum states. A program acting on this

combined state can act on the quantum part, on the classical part, or on both parts.

Combined programs acting only on quantum data are of two kinds: i) the unitary

transformations, which reversibly transform the state vector and nothing happens

to the classical probability; and ii) measurements, which probabilistically yield one

of the eigenvalues of the observable being measured, and throws the system into

the correspondent eigenstate. Yet one can have quantum operations controlled by

classical values as well as purely classical operations.

4.2.1 Programs with Probability Distributions

The probabilistic quantum programming model is based on a data type to represent

explicit probability distributions of quantum state vectors:

type EV = Double

type Prob = Double

newtype PDQst a = PDQ{unPDQ :: [([EV],Vec a,Prob)]}
More specifically, a probability distribution over a basis set a is represented by a

pair formed by: a list of real values EV , the eigenvalues which are the outputs of

previously performed measurements, and a state vector, Vec a. We chose to keep a

list of eigenvalues EV to maintain a history of measurements. For now this list does

not include information about the source of eigenvalues, i.e., about the position of

the qubit which was measured in the global state.

The dynamics of a quantum system is represented by two kinds of transforma-

tions of probability distribution over state vectors:

data PDQTrans b c = Transform ((PDQst b)→ (PDQst c))

| Meas ((PDQst b)→ (PDQst c))

We made the difference explicit because the semantics of applying unitary transfor-

mations is different from the semantics of applying measurements.

A simple unitary transformation can be defined in such a way that the transfor-

125

Vizzotto, Rocha Costa, Sabry

mation is applied to all vectors in the distribution. The list of eigenvalues and the

probabilities are preserved.

Measurements are the operations which produce eigenvalues as classical outputs

and return a new classical probability distribution of eigenstates of the observable

according to each vector in the distribution.

4.2.2 Programs with Probability Distributions as Indexed Arrows

We define the three functions, arr , >>>, and first , over PDQTrans as follows:

arr :: (Basis b,Basis c)⇒ (b → c)→ PDQTrans b c

arr f = Transform (λx → PDQ [(e1, v2, p) | (e1, v1, p)← unPDQ x ,

let fv = fun2vecfun f ,

let v2 = fv v1])

(>>>) :: (Basis b,Basis c,Basis d)⇒
PDQTrans b c → PDQTrans c d → PDQTrans b d

(Transform f) >>> (Transform g) = Transform (λx → let d = f x in g d)

(Meas f) >>> (Transform g) = Transform (λx → let d = f x in g d)

(Transform f) >>> (Meas g) = Meas (λx → let d = f x in g d)

(Meas f) >>> (Meas g) = Meas (λx → let d = f x in g d)

first :: (Basis b,Basis c,Basis d)⇒
PDQTrans b c → PDQTrans (b, d) (c, d)

first (Transform f) =

Transform (λx → let fg = getvbs (Transform f)

fext = helper first fg

in PDQ [(le, v , p) | (le1, v1, p1)← unPDQ x ,

let (le, v , p) = (le1, [((c, d), k1 ∗ k2) |
((b, d), k1)← v1, let d2 = fext (b, d),

(le2, v2, p2)← unPDQ d2,

((c, d), k2)← v2], p1)])

first (Meas f) =

Meas (λx → let fg = getvbs (Meas f)

fext = helper first fg

in zipqd (PDQ [(le, v , p) | (le1, v1, p1)← unPDQ x ,

((b, d), k1)← v1, let d2 = fext (b, d),

(le2, v2, p2)← unPDQ d2,

let (le , v) = (le2 ++ le1,

[((c, d), k1 ∗ k2) | ((c, d), k2)← v2]),

let p = p1 ∗ p2 ∗ (((∗∗2).magnitude) k1)]))

The first two functions are straightforward: arr constructs a reversible transforma-

tion from a basic function, fun2vecfun converts a “matrix” to a function mapping

vectors to vectors, and >>> just composes two PDQTrans . The function first is a

bit more subtle, the idea is to transform a function which acts in part of a quantum

state (say Vec b) to a function which acts in the global state (say Vec (b, d)). The

implementation is based in the following two functions:

getvbs :: PDQTrans a b → (a → PDQst b)

getvbs (Transform f) = λa → let d = dreturn a in f d

126

Vizzotto, Rocha Costa, Sabry

getvbs (Meas f) = λa → let d = dreturn a in f d

helper first :: (a → PDQst b)→ (a, c)→ PDQst (b, c)

helper firstl f (a, c) = let db = f a

dc = dreturn c

in PDQ [(le, v2, p ∗ q) |
(le, vb, p)← unPDQ db,

(, vc, q)← unPDQ dc,

let v2 = [((b, c),

vb b ∗ vc c) | (b, c)← basis]]

Given a PDQTrans , getvbs determines how that behaves for basic vectors. Then,

given the basis’ elements, helper first extends the transformation. Essentially, what

first does is to calculate the extended function for the input PDQTrans using firstbs ,

and then to calculate the output, correctly applying the extended PDQTrans to the

input probability distribution of state vectors. The trick for first is that we have

made an explicit difference between measurements and unitary transformations. If

the input function is not a measurement the calculation is standard, but if that is

a measurement then the number of states vectors in the distribution is augmented

and we need to use the function zipqd , which combines all state vectors that are

tagged with the same eigenvalue.

Proposition 4.2 The indexed arrow PDQTrans satisfies the required equations for

arrows.

4.3 Example: Quantum Teleportation

Quantum teleportation [3] is one of the most traditional examples of quantum algo-

rithms which require the interchanging between quantum and classical data. T hat

enables the transmission, using a classical communication channel, of an unknown

quantum state via a previously shared epr pair. In this section we faithfully express

the teleportation algorithm using the two models presented above.

In this section we use Paterson (2001)’s arrow notation. Arrow notation is an

extension to Haskell with an improved syntax for writing computations using arrows.

Here is a simple example to illustrate the notation:

e1 :: Super (Bool , a) (Bool , a)

e1 = proc (a, b)→ do

r ← lin2super hadamard ≺ a

returnA ≺ (r , b)

The do-notation simply sequences the actions in its body. The function returnA

is the equivalent for arrows of the monadic function return . The two additional

keywords are:

• the arrow abstraction proc which constructs an arrow instead of a regular function.

• the arrow application ≺ which feeds the value of an expression into an arrow.

4.3.1 Teleportation with Density Matrices and Classical Outputs

The main procedure receives no classical data and three entangled qubits; then

passes a qubit of the epr pair and the qubit to be teleported to Alice, which realizes

127

Vizzotto, Rocha Costa, Sabry

some quantum operations and measures its two qubits, returning only classical

values to the main procedure, which will be communicated to Bob.

teleportation :: QProgram () () (Bool ,Bool ,Bool) Bool

teleportation = proc (eprL, eprR, q)→ do

cs ← alice ≺ (eprL, q)

q ′ ← bob ≺ (eprR, cs)

returnA ≺ q ′

alice :: QProgram () (Bool ,Bool) (Bool ,Bool) ()

alice = proc (eprL, q)→ do

(q1, e1)← qcnotP ≺ (q , eprL)

q2 ← hadamardP ≺ q1

cs ← trA ≺ (e1, q2)

returnA ≺ cs

where qcnotP is the program:

qcnotP :: QProgram () () (Bool ,Bool) (Bool ,Bool)

qcnotP = uni2qprog (controlled arr ¬)

where controlled f (b, a) = (return b)〈∗〉
(if b then f a else return a)

which acts as a controlled quantum not over the quantum data.

Bob is a procedure which receives a classical data over (Bool ,Bool) and a qubit.

The procedure analyses the classical data and depending on its value applies or not

a certain quantum operation to the input qubit.

bob :: QProgram (Bool ,Bool) () ((),Bool) Bool

bob = λ(pbb, db)→ let (p1, d1) = if (lookup True (unzipL pbb) pbb > 0)

then (qnotP ([((), 1)], db))

else ([((), 1)], vreturn db)

(p2, d2) = if (lookup True (unzipR pbb) > 0)

then (zgateP ([((), 1)], db))

else st1

in (p2, d2)

Again we are using a program version of a unitary operation:

zgateP :: QProgram () () Bool Bool

zgateP = uni2prog zgate

The functions unzipL and unzipR take a list of tuples and return a list with

the left elements of the tuples and a list with the right elements of the tuples,

respectively.

unzipL :: [((a, b), p)] → [a]

unzipL l = let (lb, lp) = unzip l

(las , lbs) = unzip lb

in las

unzipR :: [((a, b), p)] → [b]

unzipR l = let (lb, lp) = unzip l

(las , lbs) = unzip lb

in lbs

128

Vizzotto, Rocha Costa, Sabry

4.3.2 Teleportation with Probability Distribution of Quantum State Vectors

Using a reasoning as above, we model the algorithm for teleportation using explicit

probability distributions as arrows:

alice :: PDQTrans (Bool ,Bool) ()

alice = proc (eprL, q)→ do

(q1, e1)← controlled notD ≺ (q , eprL)

q2 ← hadamardD ≺ q1

u1 ← discqD ≺ q2

e2 ← simplqD ≺ (u1, e1)

u2 ← discqD ≺ e2

returnA ≺ u2

where the function

discqD :: PDQTrans Bool ()

discards a qubit, which physically corresponds to measuring it, returning a real

value for the probability distribution; simplqD just simplifies unity ().

bob :: PDQTrans Bool Bool

bob = PDQTrans (λx → PDQ [((le1, v3), p1) | ((le1, v1), p1)← unPDQ x ,

let v2 = if ((head le1) ≡ 1) then v1 >>= qnot else v1,

let v3 = if ((head (tail le1)) ≡ 1) then v2 >>= z else v2])

teleportation :: PDQTrans (Bool ,Bool ,Bool) Bool

teleportation = proc (eprL, eprR, q)→ do

u1 ← alice ≺ (eprL, q)

q ′ ← bob ≺ eprR

returnA← q ′

5 Conclusions and Future Work

We have presented two general and complete models for combined (quantum and

classical) computations structured as arrows. The presentation is a stepping stone

to develop a language in which the classical, probabilistic, and quantum layers are

separate, which would simplify reasoning about quantum programs. The implemen-

tation is a prototype of the ideas in Haskell. We hope to integrate the results in

some quantum programming language like QML [1].

References

[1] Altenkirch, T. and J. Grattage, A functional quantum programming language, in: Proceedings of the
20th Annual IEEE Symposium on Logic in Computer Science, LICS 2005, IEEE Computer Society
Press, 2005, pp. 249–258.

[2] Altenkirch, T. and B. Reus, Monadic presentations of lambda terms using generalized inductive types,
in: Computer Science Logic, 1999.

[3] Bennett, C. H., G. Brassard, C. Crepeau, R. Jozsa, A. Peres and W. Wootters, Teleporting an unknown
quantum state via dual classical and EPR channels, Phys. Rev. Lett. (1993), pp. 1895–1899.

[4] Gay, S. J. and R. Nagarajan, Communicating quantum processes, in: Proceedings of the 32nd ACM
Symposium on Principles of Programming Languages, 2005.

[5] Hughes, J., Generalising monads to arrows, Science of Computer Programming 37 (2000), pp. 67–111.

[6] Kashefi, E., P. Panangaden and V. Danos, The measurement calculus (2004).

129

Vizzotto, Rocha Costa, Sabry

[7] Moggi, E., Computational lambda-calculus and monads, in: Proceedings of the Fourth Annual
Symposium on Logic in computer science, IEEE Computer Society Press (1989), pp. 14–23.

[8] Moggi, E., Notions of computation and monads, Information and Computation 93 (1991), pp. 55–92.

[9] Nielsen, M. A., Universal quantum computation using only projective measurement, quantum memory,
and preparation of the 0 state, Phys. Lett. A. 308 (2-3) (2003), pp. 96–100.

[10] Paterson, R., A new notation for arrows, in: International Conference on Functional Programming
(2001), pp. 229–240.

[11] Raussendorf, R., D. Browne and H. Briegel, Measurement-based quantum computation with cluster
states, Phys. Rev. A 68 (2003).

[12] Unruh, D., Quantum programs with classical output streams, in: Proceedings of the 3rd International
Workshop on Quantum Programming Languages (QPL 2005), Electronic Notes in Theoretical
Computer Science (2006).

[13] Vizzotto, J. K., T. Altenkirch and A. Sabry, Structuring quantum effects: Superoperators as arrows,
Mathematical Structures in Computer Science, special issue on Quantum Programming Languages
(2006), to appear.

130

	Introduction
	Indexed Monads and Indexed Arrows
	Indexed Monads
	Indexed Arrows

	Review: Quantum Vectors as Indexed Monads and Superoperators as Indexed Arrows
	Vectors as Indexed Monads
	Superoperators as Indexed Arrows

	Quantum Programs as Indexed Arrows
	Programs with Density Operators and Classical Outputs
	Programs with Probability Distributions of Quantum Vectors States
	Example: Quantum Teleportation

	Conclusions and Future Work
	References

