

MATH 3330: Applied Graph Theory

ASSIGNMENT #1

Due Tue. Jan 26

1. For the graph G=(V, E, endpts) with formal specification given by

$$V=\{v,w,x,y,z\}$$
; $E=\{a,b,c,d\}$; endpts(a)= $\{v,w\}$; endpts(b)= $\{w,x\}$; endpts(c)= $\{v,w\}$; endpts(d)= $\{x,x\}$,

- a) construct the incidence table for G,
- b) give the degree sequence of G, and
- c) construct a line drawing of G.
- 2. Construct a line drawing for the mixed graph with vertex set $V=\{v,w,x,y,z\}$ and edge set $E=\{e,f,g,h\}$, and the following incidence table

Edges	e	f	g	h
endpts	V	\mathbf{y}^{h}	W	W
	\mathbf{x}^{h}	V	Z	V

3. Give a formal specification for the given digraph:

- 4. With the methods shown in class, determine whether each of the following sequences is graphic:
 - a) <7,6,6,5,4,3,2,1>
 - b) <7,7,6,5,4,4,3,2>
 - c) <5,5,4,4,2,2,1,1>
 - d) <5,5,5,4,2,1,1,1>

- 5. Design an appropriate graph or digraph to model an ultimate Frisbee tournament involving 5 teams to be scheduled such that each team plays two other teams.
- 6. Consider bipartite graphs:
 - a) What is the maximum possible number of edges in a simple bipartite graph on *n* vertices?
 - b) Draw the smallest possible non-bipartite graph.
 - c) Draw a 2-regular bipartite graph that is not $K_{2,2}$.
- 7. For each of the following graphs,
 - a) P_n
 - b) C_n
 - c) K_n and
 - d) $K_{m,n}$

determine the size of each of the following:

- i) the smallest dominating set,
- ii) the smallest vertex cover,
- iii) a largest independent set of vertices, and
- iv) a maximum matching.
- 8. For each of the following graphs,
 - a) P_n for $n \ge 3$,
 - b) C_n for $n \ge 4$,
 - c) K_n for $n \ge 3$,
 - d) $K_{m,n}$ for $m \ge n \ge 3$, and
 - e) and the Petersen graph,

determine each of the following:

- i) the diameter,
- ii) the radius,
- iii) and central vertices of the indicated graph.