

MATH 3330: Applied Graph Theory

ASSIGNMENT #4

Due Thu. Feb 18

1. In the following graph,

- a) Find the indicated vertex-deletion subgraphs:
 - i) G y
 - ii) $G \{w,z\}$
 - iii) $G \{w,v,y\}$
- b) Find the indicated edge-deletion subgraphs:
 - i) G e
 - ii) $G \{a,m,p,q\}$
 - iii) $G \{d,h,k\}$
- 2. In the following graph,

- a) Find all the cut-vertices
- b) Find all the cut-edges (Give edges by its endpoints, i.e. $\{a,b\}$ for the edge with endpoints a and b).
- 3. Find a graph with the vertex-deletion subgraph list given below.

- 4. True or false: The endpoints of a cut-edge are both cut-vertices. If false, explain why.
- 5. Draw a 6-vertex connected graph that has exactly seven edges and exactly three cycles.
- 6. True or false: There exists a connected n-vertex simple graph with n+1 edges that contains exactly 2 cycles. If true, give an example. If false, explain why not.
- 7. For the following, draw the specified tree or explain why no such tree can exist.
 - a) A 14-vertex binary tree of height 3.
 - b) A 16-vertex binary tree of height 3.
 - c) A ternary tree of height 3 with exactly four vertices.
- 8. What is the relationship between the depth of a vertex v in a rooted tree and the number of ancestors of v? Explain your answer.

9. For the following, draw the root tree specified by the given array of parents.

a)	Fvertex	a	b	c	d	e	f	g	h	i	j	
	parent	-	a	b	b	b	b	b	С	С	c	_

10. Specify the rooted tree drawn below with an array of parents.

