

MATH 3330: Applied Graph Theory

ASSIGNMENT #8

Due Thu. Apr. 1 by 3pm

- 1. For each of the following, assign a minimum vertex-coloring to the graph and prove that it is a minimum coloring:
 - a) $K_3 + C_5$

b)

c)

d)

- 2. Find $\chi(G)$ for the Petersen graph.
- 3. A *k*-chromatic graph is said to be **critically** *k*-chromatic (or a *k*-critical graph) if $\chi(G v) = k 1$ for every vertex v of G.
 - a) Give an example of a *k*-chromatic graph that is not critically *k*-chromatic.
 - b) Characterize critically 2-chromatic graphs.
 - c) Characterize critically 3-chromatic graphs.
- 4. Prove that a k-chromatic graph G has at least k vertices of degree at least k-1. (Hint: make use of the definition above.)
- 5. Apply the sequential vertex-coloring algorithm (alg. 9.1.1) to this bipartite graph, using lexicographic ordering as your vertex order.

6. Prove that adding an edge to a graph increases its chromatic number by at most one.

7. For the following graph and digraph, determine the matrices A_G , I_G , and table $I_{V:E}(G)$ and, where appropriate, tables $in_{V:E}(G)$ and $out_{V:E}(G)$.

a)

b)

- 8. Describe the adjacency matrix of each of the following graph families:
 - a) K_n
 - b) P_n
 - c) C_n
 - d) Q_n
- 9. Draw the graph G that has the following adjacency matrix:

$$A_{G} = \begin{array}{cccc} & a & b & c & d \\ a & \begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ c & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array} \right]$$

10. Draw the graph G that has the following incidence matrix:

11. Draw the digraph D that has the following incidence matrix: