The Analysis of Variance for Simple Linear Regression

 the total variation in an observed response about its mean can be written as a sum of two parts - its deviation from the fitted value plus the deviation of the fitted value from the mean response

$$y_i - \bar{y} = (y_i - \hat{y}_i) + (\hat{y}_i - \bar{y})$$

- squaring both sides gives the total sum of squares on the left, and two terms on the right (the third vanishes)
- this is the analysis of variance decomposition for simple linear regression

$$SST = SSE + SSR$$

• as always, the total is

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = SS_{YY}$$

• the residual sum of squares is

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= \sum_{i=1}^{n} (y_i - \bar{y} - \hat{\beta}_1 (x_i - \bar{x}))^2$$

$$= SS_{YY} - 2\hat{\beta}_1 SS_{XY} + \hat{\beta}_1^2 SS_{XX}$$

$$= SS_{YY} - \hat{\beta}_1^2 SS_{XX}$$

$$= SS_{YY} - \hat{\beta}_1 SS_{XY}$$

$$= SS_{YY} - \frac{SS_{XY}^2}{SS_{XX}}$$

• the regression sum of squares is

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
$$= \sum_{i=1}^{n} (\hat{\beta}_1 (x_i - \bar{x}))^2$$

$$= \sum_{i=1}^{n} \hat{\beta}_{1}^{2} (x_{i} - \bar{x})^{2}$$
$$= \hat{\beta}_{1}^{2} SS_{XX} = \hat{\beta}_{1} SS_{XY} = \frac{SS_{XY}^{2}}{SS_{XX}}$$

in completing the square above, the third term is

$$2\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})(\hat{y}_{i} - \bar{y})$$

$$= 2\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})\hat{\beta}_{1}(x_{i} - \bar{x})$$

$$= 2\hat{\beta}_{1}\sum_{i=1}^{n} \hat{e}_{i}(x_{i} - \bar{x}) = 2\hat{\beta}_{1}SS_{\hat{e}X}$$

$$= 0$$

using the result that the residuals are uncorrelated with the predictors

 \bullet the degrees of freedom are $n-1,\ n-2$ and 1 corresponding to SST, SSE and SSR

 the results can be summarized in tabular form

Source	DF	SS	MS
Regression	1	SSR	MSR = SSR/1
Residual	n-2	SSE	MSE = SSE/(n-2)
Total	n-1	SST	

Example: For the Ozone data

- $SST = SS_{YY} = 1014.75$
- $SSR = \frac{SS_{xy}^2}{SS_{xx}} = (-2.7225)^2 / .009275 = 799.1381$
- SSE = SST SSR =1014.75 - 799.1381 = 215.62
- degrees of freedom: total = 4-1=3, regression = 1, error = 2

 goodness of fit of the regression line is measured by the coefficient of determination

$$R^2 = \frac{SSR}{SST}$$

- this is the proportion of variation in y explained by the regression on x
- R² is always between 0, indicating nothing is explained, and 1, indicating all points must lie on a straight line
- for simple linear regression R^2 is just the square of the (Pearson) correlation coefficient

$$R^{2} = \frac{SSR}{SST} = \frac{SS_{XY}^{2}/SS_{XX}}{SS_{YY}}$$
$$= \frac{SS_{XY}^{2}}{SS_{XX}SS_{YY}}$$
$$= r^{2}$$

- this gives another interpretation of the correlation coefficient - its square is the coefficient of determination, the proportion of variation explained by the regression
- note that with R^2 and SST, one can calculate

$$SSR = R^2 SST$$

and

$$SSE = (1 - R^2)SST$$

Example: Ozone data

- we saw r = -.8874, so R² = .78875 of the variation in y is explained by the regression
- with SST = 1014.75, we can get

$$SSR = R^2 SST = .78875(1014.75)$$

= 800.384

and

$$SSE = (1 - R^2)SST$$

 $= (1 - .78875)1014.75 = 214.3659$

• these answers differ slightly from above due to round-off error

A statistical model for simple linear regression

 we assume that an observed response value y_i is related to its predictor x_i according to the model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

- where β_0 and β_1 are the intercept and slope
- ϵ_i is an additive random deviation or 'error', assumed to have zero mean and constant variance σ^2
- any two deviations ϵ_i and ϵ_j are assumed to be independent

• the mean of y_i is

$$\mu_{x_i} = \beta_0 + \beta_1 x_i$$

which is linear in x_i

- the variance is assumed to be the same for each case, and this justifies giving each case the same weight when minimizing SSE
- under these assumptions, the least squares estimators

$$\hat{\beta}_1 = \frac{SS_{XY}}{SS_{XX}}$$

 and

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

have good statistical properties

 among all linear unbiased estimators, they have minimum variance

- an unbiased estimator has a sampling distribution with mean equal to the parameter being estimated
- the variance of the deviations σ^2 is estimated using the average squared residual,

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} = \frac{SSE}{n-2} = MSE$$

where division is by n-2 here because two $\beta{\rm 's}$ have been estimated

• to make inferences about the model parameters we also need to assume that the deviations ϵ_i are normally distributed

Statistical inferences for regression

Standard errors for regression coefficients

- regression coefficient values, $\hat{\beta}_0$ and $\hat{\beta}_1$, are point estimates of the true intercept and slope, β_0 and β_1 respectively.
- using our assumptions about the deviations, and the rules for mean and variance, the sampling distribution of the slope estimator can be derived to be

$$\hat{\beta}_1 \sim N(\beta_1, \frac{\sigma^2}{SS_{xx}})$$

- this means that if we had a large number of data sets and calculated the slope estimate each time, their histogram would look normal, be centered around the true slope and have variance as given above
- the standard deviation of $\hat{\beta}_1$ is $\sqrt{\frac{\sigma^2}{SS_{xx}}}$

the value of σ² is unknown, so the estimator MSE is used in its place to produce the standard error of the estimate β₁, as

$$SE_{\hat{\beta}_1} = \frac{\sqrt{MSE}}{\sqrt{SS_{xx}}} = \frac{s}{\sqrt{SS_{xx}}}$$

• the standard error for the intercept estimator $\hat{\beta}_0$ is

$$SE_{\hat{\beta}_0} = \sqrt{MSE(\frac{1}{n} + \frac{\bar{x}^2}{SS_{xx}})}$$

Example: Ozone data

- standard errors for the regression coefficients are estimated below.
- $SS_{xx} = .009275$ and MSE = 107.80

•
$$SE_{\hat{\beta}_1} = \sqrt{MSE/SS_{xx}} = \sqrt{107.80/.009275} = 107.81$$

•
$$SE_{\hat{\beta}_0} = \sqrt{MSE(\frac{1}{n} + \frac{\bar{x}^2}{SS_{xx}})} = \sqrt{107.80((1/4) + (.0399/.009275))} = 10.77$$

Tests for regression coefficients

- the most common and useful test is whether or not the relationship between the response and predictor is significant
- $H_0: \beta_1 = 0$, there is no linear relationship
- $H_a: \beta_1 \neq 0$, there is a linear relationship
- the alternative is usually two sided
- the test statistic is

$$T = \frac{\hat{\beta}_1}{SE_{\hat{\beta}_1}}$$

and this is compared to the t_{n-2} distribution

- on occasion, we specify a value $\beta_{1,0}$ other than 0 in the null hypothesis
- then the test statistic becomes

$$T = \frac{\hat{\beta}_1 - \beta_{1,0}}{SE_{\hat{\beta}_1}}$$

one can also test hypotheses about the intercept

•
$$H_0: eta_0 = eta_{0,0}$$
 ,

•
$$H_a: \beta_0 \neq \beta_{0,0}$$

- often we are interested in whether the intercept is zero
- the test statistic is

$$T = \frac{\hat{\beta}_0 - \beta_{0,0}}{SE_{\hat{\beta}_0}}$$

and this is compared to the t_{n-2} distribution

Example: Ozone data

- we saw $\hat{\beta}_1 = -293.531$ and $SE_{\hat{\beta}_1} = 107.81$
- the test of $H_0: \beta_1 = 0$ versus $H_a: \beta_1 \neq 0$ gives

$$T = \frac{-293.531}{107.81} = -2.7227$$

- comparing to the $t_{4-2=2}$ distribution gives P = .11 exactly, or .10 < P < .20 using the tables
- in spite of the high correlation calculated earlier, the relationship between ozone and yield is not significant using $\alpha = .10$ or smaller

Example: Tree data.

• earlier we obtained $\hat{\beta}_1 = 11.036$, n = 20, r = .976, $s_y = 91.7$ and $s_x = 8.1$ for the straight line fit • we can determine that

$$SS_{XX} = 19s_x^2 = 19(8.1)^2 = 1246.59$$

and

 $SST = SS_{YY} = 19(91.7)^2 = 159,768.9$

• from this we can calculate

$$SSE = (1 - R^2)SST$$

= $(1 - .976^2)159768.9 = 7576.88$

and

$$MSE = \frac{SSE}{n-2} = \frac{7576.88}{18} = 420.9378$$

• the standard error of the slope estimate is

$$SE_{\hat{\beta}_{1}} = \sqrt{\frac{MSE}{SS_{XX}}}$$
$$= \sqrt{\frac{420.9378}{1246.59}} = .5811$$

• the test statistic for an association between diameter and usable volume is

$$T = \frac{11.036}{.5811} = 18.99$$

and there are $20-2=18~{\rm degrees}$ of freedom

- the P value is less than .01, using the tables, so we conclude that the linear association between usable volume and diameter at chest height is statistically significant
- if you compare with the computer output shown earlier, you will see that the values calculated by hand are slightly different, due to round-off error

```
MTB > regress c2 1 c1;
SUBC> residuals c3.
The regression equation is
volume = - 191 + 11.0 diameter
```

Predictor	Coef	Stdev	t-ratio	р
-----------	------	-------	---------	---

Constant	-191.12	16.98	-11.25	0.000
diameter	11.0413	0.5752	19.19	0.000
s = 20.33	R-sq =	95.3%	R-sq(adj) =	95.1%
Analysis of Variance				

SOURCE	DF	SS	MS	F	р
Regression	1	152259	152259	368.43	0.000
Error	18	7439	413		
Total	19	159698			

Confidence intervals for regression coefficients

• confidence intervals are constructed using the standard errors as follows

$$\hat{\beta}_i \pm t_{\alpha/2, n-2} SE_{\hat{\beta}_i}$$

for i = 0 or i = 1

 the degrees of freedom for the t distribution are the same as the degrees of freedom associated with MSE

Example: Ozone data

• 95% confidence intervals for β_1 and β_0 are computed as follows

•
$$t_{\alpha/2,n-2} = t_{.025,2} = 4.303$$

• for the slope, β_1 : -293.531 ± 4.303(107.81)

$$(-757.4, 170.3)$$

 note that this interval contains zero, which confirms that the slope is not significantly different from zero

• for the intercept,
$$\beta_0$$
:
253.434 ± 4.303(10.77)

Estimating the mean of Y at $x = x^*$

• the estimated mean of Y when $x = x^*$ is

$$\hat{\mu}_{x^*} = \hat{\beta}_0 + \hat{\beta}_1 x^* = \bar{y} + \hat{\beta}_1 (x^* - \bar{x})$$

• because both $\hat{\beta}_0$ and $\hat{\beta}_1$ have normal sampling distributions, μ_{x^*} does as well

the mean of this distribution is the true mean

$$\mu_{x^*} = \beta_0 + \beta_1 x^*$$

because both $\hat{\beta}_0$ and $\hat{\beta}_1$ have means equal to their population values

• the variance of $\hat{\mu}_{x^*}$ is

$$\sigma^2 \left(\frac{1}{n} + \frac{(x^* - \bar{x})^2}{SS_{xx}} \right)$$

which is the sum of the variances of \bar{y} and $\hat{\beta}_1(x^*-\bar{x})$

• in short

$$\hat{\mu}_{x^*} \sim N\left(\beta_0 + \beta_1 x^*, \sigma^2\left(\frac{1}{n} + \frac{(x^* - \bar{x})^2}{SS_{xx}}\right)\right)$$

• the standard error of $\hat{\mu}_{x^*}$ is

$$SE_{\hat{\mu}_{x^*}} = \sqrt{MSE\left(\frac{1}{n} + \frac{(x^* - \bar{x})^2}{SS_{xx}}\right)}$$

• a confidence interval for the mean $\mu_{x^*} = \beta_0 + \beta_1 x^*$ when $x = x^*$ is given by

$$\hat{\mu}_{x^*} \pm t_{\alpha/2, n-2} SE_{\hat{\mu}_{x^*}}$$

Example: Ozone data

- a 95% confidence interval for the mean yield at x = 0.10 is obtained as follows
- when $x^* = 0.10$, the estimated mean is

 $\hat{\mu}_{.1} = 253.434 - 293.531(0.1) = 224.08$

• the standard error of this estimate is

$$SE_{\hat{\mu}_{.1}} = \sqrt{107.8 \left(\frac{1}{4} + \frac{(0.1 - .0875)^2}{.009275}\right)} = 5.36$$

- the table value is $t_{\alpha/2,n-2} = t_{.025,2} = 4.303$
- the half width of the interval, or margin of error, is

$$t_{\alpha/2,n-2}SE_{\hat{\mu}_{.1}} = 4.303(5.36) = 23.08$$

• so the interval is 224.08 ± 23.08 or (201, 247.16)

Predicting a new response value at $x = x^*$

- in making a prediction interval for a future observation on y when x = x*, we need to incorporate two sources of variation
- the first is the variation in the estimate $\hat{\mu}_{x^*}$ about the actual mean μ_{x^*}
- the second is the variation of the new response y about its mean
- the error of prediction is

$$y - (\hat{\beta}_0 + \hat{\beta}_1 x^*) = (y - (\beta_0 + \beta_1 x^*)) - (\hat{\beta}_0 + \hat{\beta}_1 x^* - (\beta_0 + \beta_1 x^*))$$

• the first term in brackets on the right hand side of this expression is ϵ^* , which has a $N(0, \sigma^2)$ distribution.

• the second term is the deviation of $\hat{\mu}_{x^*}$ from the actual mean μ_{x^*} which we have seen is

$$N\left(0,\sigma^2\left(\frac{1}{n} + \frac{(x^* - \bar{x})^2}{SS_{xx}}\right)\right)$$

• as y represents a future observation, the distributions of the two terms are independent, and it follows that the distribution of the prediction error $y - (\hat{\beta}_0 + \hat{\beta}_1 x^*)$ is

$$N\left(0,\sigma^2\left(1+\frac{1}{n}+\frac{(x^*-\bar{x})^2}{SS_{xx}}\right)\right)$$

• the standard error of the prediction error is estimated by

$$\sqrt{MSE\left(1+\frac{1}{n}+\frac{(x^*-\bar{x})^2}{SS_{xx}}\right)}$$

 and the prediction interval for y is given by

$$\hat{\beta}_{0} + \hat{\beta}_{1} x^{*} \pm t_{\alpha/2, n-2} \sqrt{MSE\left(1 + \frac{1}{n} + \frac{(x^{*} - \bar{x})^{2}}{SS_{xx}}\right)}$$

Ozone example: A 95% prediction interval for y when x = 0.10 is calculated.

 \bullet when $x^{\ast}=0.10,$ the prediction is

$$\hat{\mu}_{x^*} = 253.434 - 293.531(0.1) = 224.08$$

• the standard error of prediction is

$$SE_{y^*} = \sqrt{107.8 \left(1 + \frac{1}{4} + \frac{(0.1 - .0875)^2}{.009275}\right)}$$

= 11.69

- the margin of error is $t_{\alpha/2,n-2}SE_{y^*} = 4.303(11.69) = 50.29$
- so the prediction interval is

$$224.08 \pm 50.29$$

• or (173.79, 274.37)

Tree example: Minitab can be used to find confidence intervals for the mean at x^* and for prediction intervals for a new value at x^* .

 the output below was obtained using Stat > Regression > Options, where a diameter of 30 in. was used

```
MTB > Name c3 "CLIM1" c4 "CLIM2" c5 "PLIM1" c6 "PLIM2"
MTB > Regress c2 1 c1;
SUBC> Constant;
SUBC> Predict 30;
SUBC> CLimits 'CLIM1'-'CLIM2';
SUBC> PLimits 'PLIM1'-'PLIM2';
SUBC> Brief 2.
```

Regression Analysis: C2 versus C1

The regression equation is C2 = -191 + 11.0 C1

Predictor	Coef	SE Coef	Т	Р
Constant	-191.12	16.98	-11.25	0.000
C1	11.0413	0.5752	19.19	0.000

S = 20.3290 R-Sq = 95.3% R-Sq(adj) = 95.1%

Analysis of Variance

Source	DF	SS	MS	F	Р
Regression	1	152259	152259	368.43	0.000
Residual Error	18	7439	413		
Total	19	159698			

Predicted Values for New Observations

NewObsFitSE Fit95% CI95% PI1140.114.63(130.38, 149.85)(96.31, 183.92)

Values of Predictors for New Observations

New

- Obs C1
 - 1 30.0
 - for this dataset we previously saw that n = 20, $SS_{XX} = 1246.59$ and MSE = 420.9378

$$SE_{\hat{\mu}_{x^*}} = \sqrt{420.9378 * \left(\frac{1}{20} + \frac{(30 - 28.45)^2}{1246.59}\right)} = 4.6753$$

• this is close to the $SE \ Fit$ given in the output