The Analysis of Variance for Simple Linear Regression

- the total variation in an observed response about its mean can be written as a sum of two parts - its deviation from the fitted value plus the deviation of the fitted value from the mean response

$$
y_{i}-\bar{y}=\left(y_{i}-\hat{y_{i}}\right)+\left(\hat{y_{i}}-\bar{y}\right)
$$

- squaring both sides gives the total sum of squares on the left, and two terms on the right (the third vanishes)
- this is the analysis of variance decomposition for simple linear regression

$$
S S T=S S E+S S R
$$

- as always, the total is

$$
S S T=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=S S_{Y Y}
$$

- the residual sum of squares is

$$
\begin{aligned}
S S E & =\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-\bar{y}-\hat{\beta}_{1}\left(x_{i}-\bar{x}\right)\right)^{2} \\
& =S S_{Y Y}-2 \hat{\beta}_{1} S S_{X Y}+\hat{\beta}_{1}^{2} S S_{X X} \\
& =S S_{Y Y}-\hat{\beta}_{1}^{2} S S_{X X} \\
& =S S_{Y Y}-\hat{\beta}_{1} S S_{X Y} \\
& =S S_{Y Y}-\frac{S S_{X Y}^{2}}{S S_{X X}}
\end{aligned}
$$

- the regression sum of squares is

$$
\begin{aligned}
S S R & =\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2} \\
& =\sum_{i=1}^{n}\left(\hat{\beta}_{1}\left(x_{i}-\bar{x}\right)\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \hat{\beta}_{1}^{2}\left(x_{i}-\bar{x}\right)^{2} \\
& =\hat{\beta}_{1}^{2} S S_{X X}=\hat{\beta}_{1} S S_{X Y}=\frac{S S_{X Y}^{2}}{S S_{X X}}
\end{aligned}
$$

- in completing the square above, the third term is

$$
\begin{aligned}
& 2 \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)\left(\hat{y}_{i}-\bar{y}\right) \\
= & 2 \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right) \hat{\beta}_{1}\left(x_{i}-\bar{x}\right) \\
= & 2 \hat{\beta}_{1} \sum_{i=1}^{n} \hat{e}_{i}\left(x_{i}-\bar{x}\right)=2 \hat{\beta}_{1} S S_{\hat{e} X} \\
= & 0
\end{aligned}
$$

using the result that the residuals are uncorrelated with the predictors

- the degrees of freedom are $n-1, n-2$ and 1 corresponding to SST, SSE and SSR
- the results can be summarized in tabular form

Example: For the Ozone data

- $S S T=S S_{Y Y}=1014.75$
- $S S R=\frac{S S_{x y}^{2}}{S S_{x x}}=(-2.7225)^{2} / .009275=$ 799.1381
- $S S E=S S T-S S R=$ $1014.75-799.1381=215.62$
- degrees of freedom: total $=4-1=3$, regression $=1$, error $=2$
- goodness of fit of the regression line is measured by the coefficient of determination

$$
R^{2}=\frac{S S R}{S S T}
$$

- this is the proportion of variation in y explained by the regression on x
- R^{2} is always between 0 , indicating nothing is explained, and 1 , indicating all points must lie on a straight line
- for simple linear regression R^{2} is just the square of the (Pearson) correlation coefficient

$$
\begin{aligned}
R^{2} & =\frac{S S R}{S S T}=\frac{S S_{X Y}^{2} / S S_{X X}}{S S_{Y Y}} \\
& =\frac{S S_{X Y}^{2}}{S S_{X X} S S_{Y Y}} \\
& =r^{2}
\end{aligned}
$$

- this gives another interpretation of the correlation coefficient - its square is the coefficient of determination, the proportion of variation explained by the regression
- note that with R^{2} and SST, one can calculate

$$
S S R=R^{2} S S T
$$

and

$$
S S E=\left(1-R^{2}\right) S S T
$$

Example: Ozone data

- we saw $r=-.8874$, so $R^{2}=.78875$ of the variation in y is explained by the regression
- with $S S T=1014.75$, we can get

$$
\begin{aligned}
S S R & =R^{2} S S T=.78875(1014.75) \\
& =800.384
\end{aligned}
$$

and

$$
\begin{aligned}
S S E & =\left(1-R^{2}\right) S S T \\
& =(1-.78875) 1014.75=214.3659
\end{aligned}
$$

- these answers differ slightly from above due to round-off error

A statistical model for simple linear regression

- we assume that an observed response value y_{i} is related to its predictor x_{i} according to the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}
$$

- where β_{0} and β_{1} are the intercept and slope
- ϵ_{i} is an additive random deviation or 'error', assumed to have zero mean and constant variance σ^{2}
- any two deviations ϵ_{i} and ϵ_{j} are assumed to be independent
- the mean of y_{i} is

$$
\mu_{x_{i}}=\beta_{0}+\beta_{1} x_{i}
$$

which is linear in x_{i}

- the variance is assumed to be the same for each case, and this justifies giving each case the same weight when minimizing SSE
- under these assumptions, the least squares estimators

$$
\hat{\beta}_{1}=\frac{S S_{X Y}}{S S_{X X}}
$$

and

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
$$

have good statistical properties

- among all linear unbiased estimators, they have minimum variance
- an unbiased estimator has a sampling distribution with mean equal to the parameter being estimated
- the variance of the deviations σ^{2} is estimated using the average squared residual,
$s^{2}=\frac{1}{n-2} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\frac{S S E}{n-2}=M S E$
where division is by $n-2$ here because two β 's have been estimated
- to make inferences about the model parameters we also need to assume that the deviations ϵ_{i} are normally distributed

Statistical inferences for regression

Standard errors for regression coefficients

- regression coefficient values, $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, are point estimates of the true intercept and slope, β_{0} and β_{1} respectively.
- using our assumptions about the deviations, and the rules for mean and variance, the sampling distribution of the slope estimator can be derived to be

$$
\hat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma^{2}}{S S_{x x}}\right)
$$

- this means that if we had a large number of data sets and calculated the slope estimate each time, their histogram would look normal, be centered around the true slope and have variance as given above
- the standard deviation of $\hat{\beta}_{1}$ is $\sqrt{\frac{\sigma^{2}}{S S_{x x}}}$
- the value of σ^{2} is unknown, so the estimator $M S E$ is used in its place to produce the standard error of the estimate $\hat{\beta}_{1}$, as

$$
S E_{\hat{\beta}_{1}}=\frac{\sqrt{M S E}}{\sqrt{S S_{x x}}}=\frac{s}{\sqrt{S S_{x x}}}
$$

- the standard error for the intercept estimator $\hat{\beta}_{0}$ is

$$
S E_{\hat{\beta}_{0}}=\sqrt{M S E\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S S_{x x}}\right)}
$$

Example: Ozone data

- standard errors for the regression coefficients are estimated below.
- $S S_{x x}=.009275$ and $M S E=107.80$
- $S E_{\hat{\beta}_{1}}=\sqrt{M S E / S S_{x x}}=$
$\sqrt{107.80 / .009275}=107.81$
- $S E_{\hat{\beta}_{0}}=\sqrt{M S E\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S S_{x x}}\right)}=$

Tests for regression coefficients

- the most common and useful test is whether or not the relationship between the response and predictor is significant
- $H_{0}: \beta_{1}=0$, there is no linear relationship
- $H_{a}: \beta_{1} \neq 0$, there is a linear relationship
- the alternative is usually two sided
- the test statistic is

$$
T=\frac{\hat{\beta}_{1}}{S E_{\hat{\beta}_{1}}}
$$

and this is compared to the t_{n-2} distribution

- on occasion, we specify a value $\beta_{1,0}$ other than 0 in the null hypothesis
- then the test statistic becomes

$$
T=\frac{\hat{\beta}_{1}-\beta_{1,0}}{S E_{\hat{\beta}_{1}}}
$$

- one can also test hypotheses about the intercept
- $H_{0}: \beta_{0}=\beta_{0,0}$,
- $H_{a}: \beta_{0} \neq \beta_{0,0}$
- often we are interested in whether the intercept is zero
- the test statistic is

$$
T=\frac{\hat{\beta}_{0}-\beta_{0,0}}{S E_{\hat{\beta}_{0}}}
$$

and this is compared to the t_{n-2} distribution

Example: Ozone data

- we saw $\hat{\beta}_{1}=-293.531$ and
$S E_{\hat{\beta}_{1}}=107.81$
- the test of $H_{0}: \beta_{1}=0$ versus
$H_{a}: \beta_{1} \neq 0$ gives

$$
T=\frac{-293.531}{107.81}=-2.7227
$$

- comparing to the $t_{4-2=2}$ distribution gives $P=.11$ exactly, or $.10<P<.20$ using the tables
- in spite of the high correlation calculated earlier, the relationship between ozone and yield is not significant using $\alpha=.10$ or smaller

Example: Tree data.

- earlier we obtained $\hat{\beta}_{1}=11.036, n=20$, $r=.976, s_{y}=91.7$ and $s_{x}=8.1$ for the straight line fit
- we can determine that

$$
S S_{X X}=19 s_{x}^{2}=19(8.1)^{2}=1246.59
$$

and

$$
S S T=S S_{Y Y}=19(91.7)^{2}=159,768.9
$$

- from this we can calculate

$$
\begin{aligned}
S S E & =\left(1-R^{2}\right) S S T \\
& =\left(1-.976^{2}\right) 159768.9=7576.88
\end{aligned}
$$

and

$$
M S E=\frac{S S E}{n-2}=\frac{7576.88}{18}=420.9378
$$

- the standard error of the slope estimate is

$$
\begin{aligned}
S E_{\hat{\beta}_{1}} & =\sqrt{\frac{M S E}{S S_{X X}}} \\
& =\sqrt{\frac{420.9378}{1246.59}}=.5811
\end{aligned}
$$

- the test statistic for an association between diameter and usable volume is

$$
T=\frac{11.036}{.5811}=18.99
$$

and there are $20-2=18$ degrees of freedom

- the P value is less than .01 , using the tables, so we conclude that the linear association between usable volume and diameter at chest height is statistically significant
- if you compare with the computer output shown earlier, you will see that the values calculated by hand are slightly different, due to round-off error

MTB > regress c2 1 c 1 ;
SUBC> residuals c3.
The regression equation is
volume = - $191+11.0$ diameter

Constant	-191.12	16.98	-11.25	0.000
diameter	11.0413	0.5752	19.19	0.000
$s=20.33$	$R-s q=95.3 \%$	$R-s q(a d j)=95.1 \%$		

Analysis of Variance

SOURCE	DF	SS	MS	F	p
Regression	1	152259	152259	368.43	0.000
Error	18	7439	413		
Total	19	159698			

Confidence intervals for regression coefficients

- confidence intervals are constructed using the standard errors as follows

$$
\hat{\beta}_{i} \pm t_{\alpha / 2, n-2} S E_{\hat{\beta}_{i}}
$$

for $i=0$ or $i=1$

- the degrees of freedom for the t
distribution are the same as the degrees of freedom associated with MSE

Example: Ozone data

- 95% confidence intervals for β_{1} and β_{0} are computed as follows
- $t_{\alpha / 2, n-2}=t_{.025,2}=4.303$
- for the slope, β_{1} :
$-293.531 \pm 4.303(107.81)$

$$
(-757.4, \quad 170.3)
$$

- note that this interval contains zero, which confirms that the slope is not significantly different from zero
- for the intercept, β_{0} :
$253.434 \pm 4.303(10.77)$

$$
(207.1, \quad 299.8)
$$

Estimating the mean of Y at $x=x^{*}$

- the estimated mean of Y when $x=x^{*}$ is

$$
\hat{\mu}_{x^{*}}=\hat{\beta}_{0}+\hat{\beta}_{1} x^{*}=\bar{y}+\hat{\beta}_{1}\left(x^{*}-\bar{x}\right)
$$

- because both $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ have normal sampling distributions, $\mu_{x^{*}}$ does as well
- the mean of this distribution is the true mean

$$
\mu_{x^{*}}=\beta_{0}+\beta_{1} x^{*}
$$

because both $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ have means equal to their population values

- the variance of $\hat{\mu}_{x^{*}}$ is

$$
\sigma^{2}\left(\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S S_{x x}}\right)
$$

which is the sum of the variances of \bar{y} and $\hat{\beta}_{1}\left(x^{*}-\bar{x}\right)$

- in short

$$
\hat{\mu}_{x^{*}} \sim N\left(\beta_{0}+\beta_{1} x^{*}, \sigma^{2}\left(\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S S_{x x}}\right)\right)
$$

- the standard error of $\hat{\mu}_{x^{*}}$ is

$$
S E_{\hat{\mu}_{x^{*}}}=\sqrt{M S E\left(\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S S_{x x}}\right)}
$$

- a confidence interval for the mean
$\mu_{x^{*}}=\beta_{0}+\beta_{1} x^{*}$ when $x=x^{*}$ is given by

$$
\hat{\mu}_{x^{*}} \pm t_{\alpha / 2, n-2} S E_{\hat{\mu}_{x^{*}}}
$$

Example: Ozone data

- a 95% confidence interval for the mean yield at $x=0.10$ is obtained as follows
- when $x^{*}=0.10$, the estimated mean is

$$
\hat{\mu}_{.1}=253.434-293.531(0.1)=224.08
$$

- the standard error of this estimate is

$$
S E_{\hat{\mu} .1}=\sqrt{107.8\left(\frac{1}{4}+\frac{(0.1-.0875)^{2}}{.009275}\right)}=5.36
$$

- the table value is

$$
t_{\alpha / 2, n-2}=t_{.025,2}=4.303
$$

- the half width of the interval, or margin of error, is

$$
t_{\alpha / 2, n-2} S E_{\hat{\mu}_{.1}}=4.303(5.36)=23.08
$$

- so the interval is 224.08 ± 23.08 or (201, 247.16)

Predicting a new response value at $x=x^{*}$

- in making a prediction interval for a future observation on y when $x=x^{*}$, we need to incorporate two sources of variation
- the first is the variation in the estimate $\hat{\mu}_{x^{*}}$ about the actual mean $\mu_{x^{*}}$
- the second is the variation of the new response y about its mean
- the error of prediction is

$$
\begin{aligned}
y-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x^{*}\right)= & \left(y-\left(\beta_{0}+\beta_{1} x^{*}\right)\right)- \\
& \left(\hat{\beta}_{0}+\hat{\beta}_{1} x^{*}-\left(\beta_{0}+\beta_{1} x^{*}\right)\right)
\end{aligned}
$$

- the first term in brackets on the right hand side of this expression is ϵ^{*}, which has a $N\left(0, \sigma^{2}\right)$ distribution.
- the second term is the deviation of $\hat{\mu}_{x^{*}}$ from the actual mean $\mu_{x^{*}}$ which we have seen is

$$
N\left(0, \sigma^{2}\left(\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S S_{x x}}\right)\right)
$$

- as y represents a future observation, the distributions of the two terms are independent, and it follows that the distribution of the prediction error $y-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x^{*}\right)$ is

$$
N\left(0, \sigma^{2}\left(1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S S_{x x}}\right)\right)
$$

- the standard error of the prediction error is estimated by

$$
\sqrt{M S E\left(1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S S_{x x}}\right)}
$$

- and the prediction interval for y is given by
$\hat{\beta}_{0}+\hat{\beta}_{1} x^{*} \pm t_{\alpha / 2, n-2} \sqrt{M S E\left(1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S S_{x x}}\right)}$
Ozone example: A 95\% prediction interval
for y when $x=0.10$ is calculated.
- when $x^{*}=0.10$, the prediction is

$$
\hat{\mu}_{x^{*}}=253.434-293.531(0.1)=224.08
$$

- the standard error of prediction is

$$
\begin{aligned}
S E_{y^{*}} & =\sqrt{107.8\left(1+\frac{1}{4}+\frac{(0.1-.0875)^{2}}{.009275}\right)} \\
& =11.69
\end{aligned}
$$

- the margin of error is

$$
t_{\alpha / 2, n-2} S E_{y^{*}}=4.303(11.69)=50.29
$$

- so the prediction interval is

$$
224.08 \pm 50.29
$$

- or (173.79, 274.37)

Tree example: Minitab can be used to find confidence intervals for the mean at x^{*} and for prediction intervals for a new value at x^{*}.

- the output below was obtained using

Stat $>$ Regression $>$ Options, where a diameter of 30 in . was used

MTB > Name c3 "CLIM1" c4 "CLIM2" c5 "PLIM1" c6 "PLIM2" MTB > Regress c2 1 c 1 ;
SUBC> Constant;
SUBC> Predict 30;
SUBC> CLimits 'CLIM1'-'CLIM2';
SUBC> PLimits 'PLIM1'-'PLIM2';
SUBC> Brief 2.
Regression Analysis: C2 versus C1
The regression equation is

$$
\mathrm{C} 2=-191+11.0 \mathrm{C} 1
$$

Predictor	Coef	SE Coef	T	P
Constant	-191.12	16.98	-11.25	0.000
C1	11.0413	0.5752	19.19	0.000

$$
S=20.3290 \quad R-S q=95.3 \% \quad R-S q(a d j)=95.1 \%
$$

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	152259	152259	368.43	0.000
Residual Error	18	7439	413		
Total	19	159698			

Predicted Values for New Observations

New

Obs	Fit	SE Fit	95% CI	95% PI
1	140.11	4.63	$(130.38,149.85)$	$(96.31,183.92)$

Values of Predictors for New Observations

New
Obs C1
130.0

- for this dataset we previously saw that $n=20, S S_{X X}=1246.59$ and $M S E=420.9378$
- the mean diameter is $\bar{x}=28.45$, so the standard error for estimating the mean at $X=30$ is

$$
\begin{aligned}
S E_{\hat{\mu}_{x^{*}}} & =\sqrt{420.9378 *\left(\frac{1}{20}+\frac{(30-28.45)^{2}}{1246.59}\right)} \\
& =4.6753
\end{aligned}
$$

- this is close to the $S E$ Fit given in the output

