Multiple comparisons - subsequent inferences for one-way ANOVA

- if the overall F test does not show significant differences among the groups, then no further inferences are required
- if the overall test of equality of means concludes in favour of the alternative $H_A: \text{not all means are the same}$, then the natural question is “which of the means are difference”

The differences between a particular means, say of the i’th and k’th populations can be tested with a t-test, using the test statistic

$$T = \frac{\bar{x}_i - \bar{x}_k}{\sqrt{MSE} \sqrt{\frac{1}{n_i} + \frac{1}{n_k}}}$$

- The null hypothesis here is $H_{0,ik}: \mu_i = \mu_k$ and the alternative is $H_{A,ik}: \mu_i \neq \mu_k$.
- in this expressions, MSE is the estimate of σ^2 from the analysis of variance
- the degrees of freedom for the t-test is $N - a$, which is the degrees of freedom associated with MSE in the ANOVA

adjustment must be made for the fact that we are doing multiple comparisons, that is, for the fact that several tests are being done, sometimes known as simultaneous inference

- the simplest adjustment is the Bonferroni correction, which reduces the significance level for each test so that the overall probability of making at least one type I error is no larger than the level α associated with the ANOVA

- in a one-way ANOVA with a groups, there are $\binom{a}{2}$ natural comparisons between pairs of groups
- if you do r tests each at level α, then the probability of incorrectly rejecting at least one null hypothesis could be as large as $r\alpha$
 - for example for $r = 2$

$$P(\text{reject at least one } H_0) = P(\text{reject 1st}) + P(\text{reject 2nd}) - P(\text{reject both}) \leq 2\alpha$$

- to control the overall level, or experimentwise error rate, at α, each test should be done using $\alpha_* = \alpha/r$
• alternatively the P value should be multiplied by r
• similarly for r confidence intervals, use of α_s will give simultaneous confidence level $1 - \alpha$
• These simultaneous confidence intervals for the differences of two means are of the form
\[
\left(\bar{x}_i - \bar{x}_k - t_{\alpha*/2,N-a}\sqrt{MSE} \sqrt{\frac{1}{n_i} + \frac{1}{n_k}}, \bar{x}_i - \bar{x}_k + t_{\alpha*/2,N-a}\sqrt{MSE} \sqrt{\frac{1}{n_i} + \frac{1}{n_k}} \right)
\]
Example: for the golf balls, the summary statistics are

<table>
<thead>
<tr>
<th>i</th>
<th>(\bar{x}_i)</th>
<th>(s^2_i)</th>
<th>(n_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>251.28</td>
<td>33.487</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>261.98</td>
<td>18.197</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>269.66</td>
<td>27.253</td>
<td>5</td>
</tr>
</tbody>
</table>

- the value for MSE is 26.312
- there are 3 possible pairwise comparisons between the groups
- the denominator of the test statistics is
 \[\sqrt{MSE} \sqrt{\frac{1}{n_i} + \frac{1}{n_k}} = 5.1295(0.6325) = 3.24 \]
- the degrees of freedom are 12
- with \(\alpha = 0.05\), \(\alpha_\ast = 0.05/3 = 0.0167\), \(\alpha_\ast/2 = 0.00833\), and \(t_{0.00833,12} = 2.7794\)
- found, for example, as

```
MTB > invcdf .00833;
SUBC> t 12.
Inverse Cumulative Distribution Function
Student's t distribution with 12 DF
P(X<=x) x
0.00833 -2.77969
```
- the test statistics are
 \[t_{12} = \frac{251.18 - 261.98}{3.24} = -3.329 \]
 \[t_{13} = \frac{251.18 - 269.66}{3.24} = -5.697 \]
 and
 \[t_{23} = \frac{261.98 - 269.66}{3.24} = -2.367 \]
- the first two comparisons are significant at the .05 level but the third one is not
- confidence intervals for the differences in means are
 \(-10.8 \pm 2.78(3.24) \text{ or } (-19.81, -1.79)\)
 \(-18.48 \pm 9.01 \text{ or } (-27.49, -9.47)\)
 and
 \(-7.68 \pm 9.01 \text{ or } (-16.69, 1.33)\)
Example: for the liver weights, the means in ascending order are

<table>
<thead>
<tr>
<th>diet</th>
<th>B</th>
<th>C</th>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_i</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>mean</td>
<td>3.43</td>
<td>3.598</td>
<td>3.803</td>
<td>3.935</td>
</tr>
</tbody>
</table>

- the estimated standard deviation is $\sqrt{MSE} = 0.1899$

- there are 6 comparisons, so the appropriate table value for $\alpha = 0.05$ is $t_{25}^{0.025/6} = 2.8649$, from MINITAB

- the pairwise differences in the means are

<table>
<thead>
<tr>
<th>i/k</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.373</td>
<td>.205</td>
<td>-.132</td>
</tr>
<tr>
<td>B</td>
<td>-.168</td>
<td>-.505</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-.337</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- the absolute difference in means must exceed $t_{25}^{0.025/6} \sqrt{MSE} \sqrt{\frac{1}{n_i} + \frac{1}{n_k}}$, which depends on the two sample sizes.

<table>
<thead>
<tr>
<th>n_i/n_k</th>
<th>t</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>.3025</td>
<td>.2938</td>
</tr>
<tr>
<td>7</td>
<td>.2818</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.2720</td>
<td></td>
</tr>
</tbody>
</table>

- using this table, we find that B and C, C and A and A and D are not statistically significant, the other 3 comparisons are significant