
1

Two-Way Analysis of Variance - no interaction

Example: Tests were conducted to assess the effects of two factors, engine type, and
propellant type, on propellant burn rate in fired missiles. Three engine types and
four propellant types were tested.

Twenty-four missiles were selected from a large production batch. The missiles were
randomly split into three groups of size eight. The first group of eight had engine
type 1 installed, the second group had engine type 2, and the third group received
engine type 3.‘

Each group of eight was randomly divided into four groups of two. The first such
group was assigned propellant type 1, the second group was assigned propellant type
2, and so on.

Data on burn rate were collected, as follows:

Engine Propellant Type
type 1 2 3 4

1 34.0 30.1 29.8 29.0
32.7 32.8 26.7 28.9

2 32.0 30.2 28.7 27.6
33.2 29.8 28.1 27.8

3 28.4 27.3 29.7 28.8
29.3 28.9 27.3 29.1

We want to determine whether either factor, engine type (factor A) or propellant
type (factor B), has a significant effect on burn rate.

Let Yijk denote the k’th observation at the i’th level of factor A and the j’th level of
factor B.



2

The two factor model (without interaction) is:

Yijk = µ + αi + βj + εijk i = 1, 2, 3, j = 1, 2, 3, 4, k = 1, 2, where

1. µ is the overall mean

2.
∑

i αi = 0

3.
∑

j βj = 0

4. we assume εijk are iid N(0, σ2)

5. The mean of Yijk is

µijk = E[Yijk] = µ + αi + βj

This model specifies that a plot of the mean against the levels of factor A consists
of parallel lines for each different level of factor B, and a plot of the mean against
the levels of factor B consists of parallel lines for each different level of factor A.

More generally, there will be I levels of factor A, J levels of factor B, and K
replicates at each combination of levels of factors A and B.

Yijk = µ + αi + βj + εijk

i = 1, 2, . . . , I, j = 1, 2, . . . , J , k = 1, 2, . . . , K

• In the example, I = 3, J = 4, K = 2, and there are n = 24 observations in
total. There are K = 2 replicates at each level the factors A and B, and
the experimental design is said to be balanced, because there are the same
number of replicates in each cell.
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The following table gives the cell means: Ȳij.

Engine Propellant Type
type 1 2 3 4

1 33.35 31.45 28.25 28.95

2 32.60 30.00 28.40 27.70

3 28.85 28.10 28.50 28.95

• The estimated grand mean is: µ̂ = ȳ... = 29.5917

• the estimated factor A level means are:

ȳ1.. = (33.35 + 31.45 + 28.25 + 29.95)/4 = 30.50

ȳ2.. = (32.6 + 30 + 28.4 + 27.7)/4 = 29.675

ȳ3.. = (28.85 + 28.1 + 28.5 + 28.95)/4 = 28.60

• and the estimated factor B level means are:

ȳ.1. = (33.35 + 32.6 + 28.85)/3 = 31.60

ȳ.2. = (31.45 + 30 + 28.1)/3 = 29.85

ȳ.3. = (28.25 + 28.4 + 28.5)/3 = 28.383

ȳ.4. = (28.95 + 27.7 + 28.95)/3 = 28.533
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Estimation of Model Parameters

• µ̂ = ȳ... = (30.5 + 29.675 + 28.6)/3 = (31.6 + 29.85 + 28.383 + 28.533)/4 =
29.5917

• α̂i = ȳi.. − ȳ...

α̂1 = ȳ1.. − ȳ... = 30.50− 29.5917 = .908

α̂2 = ȳ2.. − ȳ... = 29.675− 29.5917 = .083

α̂3 = ȳ3.. − ȳ... = 28.60− 29.5917 = −.992

Note that α̂1 + α̂2 + α̂3 = 0.

• β̂j = ȳ.j. − ȳ...

β̂1 = ȳ.1. − ȳ... = 31.60− 29.5917 = 2.0083

β̂2 = ȳ.2. − ȳ... = 29.85− 29.5917 = .2583

β̂3 = ȳ.3. − ȳ... = 28.383− 29.5917 = −1.2087

β̂4 = ȳ.4. − ȳ... = 28.533− 29.5917 = −1.0587

Note that β̂1 + β̂2 + β̂3 + β̂4 = 0.
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In the twoway model without interaction, the estimated cell means are:

µ̂ijk = Ê[Yijk] = µ̂ + α̂i + β̂j

The estimated means are as follows.

Engine Propellant type
type 1 2 3 4
1 32.508 30.758 29.291 29.441
2 31.683 29.933 28.466 28.616
3 30.608 28.858 27.391 27.541

The residuals are the differences between the observations and the estimated
means (Yijk − µ̂ijk). They are given in the following table:

Engine Propellant Type
type 1 2 3 4

1 1.492 -0.658 0.509 -0.441
0.192 2.042 -2.591 -0.541

2 0.317 0.267 0.234 -1.016
1.517 -0.133 -0.366 -0.816

3 -2.208 -1.558 2.309 1.259
-1.308 0.042 -0.091 1.559

• The mean of the residuals is 0. This will always be the case.

• The sum of squares of the residuals is the error sum of squares (SSE) in the
ANOVA table.
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> resids

1.492 -0.658 0.509 -0.441 0.192 2.042 -2.591 -0.541 0.317 0.267

0.234 -1.016 1.517 -0.133 -0.366 -0.816 -2.208 -1.558 2.309 1.259

-1.308 0.042 -0.091 1.559

> mean(resids)

[1] 5e-04

The sum of squares of the residuals is 37.07.

> sum(resids^2)

[1] 37.07334
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Formulas for Sums of Squares

SSA = JK
∑

i(ȳi..− ȳ...)
2 = JK

∑
i α̂

2
i = 4×2×(.9082+ .0832+(−.992)2) = 14.52

SSB = IK
∑

j(ȳ.j.− ȳ...)
2 = IK

∑
j β̂2

j = 3×2× (2.00832 + .25832 +(−1.2087)2 +
(−1.05872)) = 40.08

SSE = 37.07

SST =
∑

i
∑

j
∑

k(yijk − ȳ...)
2 =

∑
i
∑

j
∑

k(yijk − 29.5917)2 = 91.68

• Note the additivity relationsip, SST=SSA+SSB+SSE.

• If there are no replicates (only one observation per cell), then K will be equal
to 1 in these formulas.

• The total degrees of freedom is the number of observations (24) minus 1, or
23. In general this will be n− 1.

• The degrees of freedom for factor A is the number of levels of A (3) minus
1, or 2. In general this will be I − 1.

• The degrees of freedom for factor B is the number of levels of B (4) minus
1, or 3. In general this will be J − 1.

• The degrees of freedom for error is the total number of degrees of freedom,
minus the degrees of freedom for A, minus the degrees of freedom for B, or
23-2-3=18. In general this will be (n−1)− (I−1)− (J −1) = n− I−J +1.

• This allows us the build the ANOVA table, as follows.
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Source DF SS MS F P
A 2 14.52 MSA=7.26 MSA/MSE=3.53
B 3 40.08 MSB=13.36 MSB/MSE=6.49
Error 18 37.07 MSE=2.06
Total 23 91.68

The hypotheses of interest are:

• H0A : α1 = α2 = . . . = αI = 0 (no effect of factor A)

• The observed test statistic for H0A is FobsA = MSA/MSE, and the p-value
is P (FI−1,n−I−J+1) > FobsA, or in the present case, P (F2,18) > 3.53. Referring
to the F table, we see that the p-value is in (.05,.10).

• H0B : β1 = β2 = . . . = βI = 0 (no effect of factor B)

• The observed test statistic for H0B is FobsB = MSB/MSE, and the p-value
is P (FJ−1,n−I−J+1) > FobsB, or in the present case, P (F3,18) > 6.49.

Calculating in R, the p-value is:

> pf(6.49,3,18,lower.tail=F)

[1] 0.003614655

Calculating in minitab, the p-value is:
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Here is the output from fitting an additive two way ANOVA in minitab.

MTB > set c1

DATA> 34 32.7 30.1 32.8 29.8 26.7 29 28.9

DATA> 32 33.2 30.2 29.8 28.7 28.1 27.6 27.8

DATA> 28.4 29.3 27.3 28.9 29.7 27.3 28.8 29.1

DATA> end

MTB > set c2

DATA> 8(1) 8(2) 8(3)

DATA> set c3

DATA> 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

DATA> end

MTB > twoway c1 c2 c3;

SUBC> additive.

Two-way ANOVA: C1 versus C2, C3

Source DF SS MS F P

C2 2 14.5233 7.2617 3.53 0.051

C3 3 40.0817 13.3606 6.49 0.004

Error 18 37.0733 2.0596

Total 23 91.6783

S = 1.435 R-Sq = 59.56% R-Sq(adj) = 48.33%

Individual 95% CIs For Mean Based on

Pooled StDev

C2 Mean -+---------+---------+---------+--------

1 30.500 (--------*--------)

2 29.675 (--------*--------)

3 28.600 (--------*--------)

-+---------+---------+---------+--------

27.6 28.8 30.0 31.2
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Individual 95% CIs For Mean Based on

Pooled StDev

C3 Mean ---------+---------+---------+---------+

1 31.6000 (--------*-------)

2 29.8500 (-------*-------)

3 28.3833 (-------*-------)

4 28.5333 (-------*-------)

---------+---------+---------+---------+

28.5 30.0 31.5 33.0

Factor A (engine type), with a pvalue=.051 is marginally

significant.

Factor B (propellant type), with a pvalue= .004 is highly

significant.
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By way of comparison, look what happens if we forget to add the second factor.
Following are the 1 way ANOVAS for engine type and propellant separately.
Note that the lines for “Total” and treatment factor (A or B) are unchanged.
The error sums of squares and degrees of freedom are pooled values from the
twoway ANOVA table. (eg. 77.16= 40.0817+37.0733; 21=18+3). The impor-
tant thing to note is that factor A is now declared to be completely unimportant
(p-value=.164)? What happened? By neglecting to include factor B, the SSE
has more than doubled, while the error df has increased by only 3. The resulting
estimate of the error variance (3.67) is nearly twice what it was in the two factor
model, making the differences between engine types appear to be insignificant.

MTB > oneway c1 c2

One-way ANOVA: C1 versus C2

Source DF SS MS F P

C2 2 14.52 7.26 1.98 0.164

Error 21 77.16 3.67

Total 23 91.68

MTB > oneway c1 c3

One-way ANOVA: C1 versus C3

Source DF SS MS F P

C3 3 40.08 13.36 5.18 0.008

Error 20 51.60 2.58

Total 23 91.68
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Two-Way Analysis of Variance - with interaction

Let us go back to our two factor example on missile burn rate.

The two factor model without interaction was
Yijk = µ + αi + βj + εijk i = 1, 2, 3, j = 1, 2, 3, 4, k = 1, 2,

This model is rather restrictive in that it assumes that the difference in mean burn
rate for two propellant types does not depend on the engine type that was being
used, and the difference in mean burn rate for two engine types does not depend on
the propellants which were being used. In fact, some propellants might work best
with certain engine types, and vice versa, so we need to consider a more general
model.

The two factor model with interaction is:
Yijk = µ+αi+βj+γij+εijk i = 1, 2, . . . , I, j = 1, 2, . . . , J , k = 1, 2, . . . , K.

where

• µ is the overall mean

• ∑I
i=1 αi = 0

• ∑J
j=1 βj = 0

• ∑I
i=1 γij = 0 for each j = 1, 2, . . . , J

• ∑J
j=1 γij = 0 for each i = 1, 2, . . . , I

• we assume εijk are iid N(0, σ2)

• in this case the mean of Yijk is

µijk = E[Yijk] = µ + αi + βj + γij

The sum constraints ensure that there is a unique correspondence between the pa-
rameters (the α’s, β’s, γ’s and µ) and the means of the random variables (the µijk’s).
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In the twoway model with interaction, the estimate of the mean µijk is given by
µ̂ijk = ȳij.. In the example, these were calculated as:

Engine Propellant Type
type 1 2 3 4

1 33.35 31.45 28.25 28.95

2 32.60 30.00 28.40 27.70

3 28.85 28.10 28.50 28.95

leading to the residuals:

Engine Propellant Type
type 1 2 3 4

1 0.65 -1.35 1.55 0.05
-0.65 1.35 -1.55 -0.05

2 -0.60 0.20 0.30 -0.10
0.60 -0.20 -0.30 0.10

3 -0.45 -0.80 1.20 -0.15
0.45 0.80 -1.20 0.15

• As usual, the sum of the residuals equals 0.

• The sum of squares of the residuals is SSE = 14.91.
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• The total sum of squares SST , sum of squares for engine type SSA and sum of
squares for propellant type SSB are as before.

• The twoway model with interaction has a sum of squares for term for interaction

SSAB =
I∑

i=1

J∑
j=1

K∑
k=1

(Ȳij. − Ȳi.. − Ȳ.j. + Ȳ...)
2

• SST = SSA + SSB + SSAB + SSE

• The degrees of freedom for interaction is (I−1)(J−1) and the degrees of freedom
for error is IJ(K − 1). The degrees of freedom for factors A and B and total
are unchanged, and again, there is an additivity relationship for the degrees of
freedom.

The ANOVA table for the model with interaction is:

Source DF SS MS F P
A I-1 SSA MSA MSA/MSE
B J-1 SSB MSB MSB/MSE
AB (I-1)(J-1) SSAB MSAB MSAB/MSE
Error IJ(K-1) SSE MSE
Total IJK-1 SST
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In the example:

Source DF SS MS F P
A 2 14.52 7.26 5.84
B 3 40.08 13.36 10.75
AB 6 22.17 3.70 2.97
Error 12 14.91 1.243
Total 23 91.68

1. The p-value for the test for no interaction between propellant type and engine
type, formally γij = 0 for all i and j, is given by pvalue = P (F(I−1)(J−1),IJ(K−1) >
MSAB/MSE. For these data, the p-value is P (F6,12 > 2.97) ∈ (.05, .1). In
this case the test for interaction is not significant (ie we conclude there is no
interaction between factors A and B), which indicates that the profile plots of
the means are parallel. That is, the additive model is reasonable.

2. It only makes sense to test for the main effects of factors A and B if there is
no interaction between the factors. In this case:

(a) in testing for the main effect of engine type, the p-value is p = P (F2,12 >
5.84) ∈ (.01, .05)

(b) in testing for the main effect of propellant, the p-value is p = P (F3,12 >
10.75) < .01.

When testing at level .05, we conclude that there are significant differences
between propellant types, and between engine types.
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Here is the minitab output which verifies the calculations:

MTB > Twoway c1 c2 c3.

Two-way ANOVA: C1 versus C2, C3

Source DF SS MS F P

C2 2 14.5233 7.2617 5.84 0.017

C3 3 40.0817 13.3606 10.75 0.001

Interaction 6 22.1633 3.6939 2.97 0.051

Error 12 14.9100 1.2425

Total 23 91.6783

Notes:

• If we had found that there was a significant interaction between propellant and
engine type, we should not test for the main effects of those factors, as we know
that there are effects of each factor, but that the effect of one factor will depend
on the level of the other factor, because the mean profiles are NOT parallel.

• In the example, our conclusion was that there is no interaction, but that there
are significant main effects of engine type AND propellant type. We can use a
Bonferroni procedure to determine for which levels the effects of factor A are
different, and for which levels the effects of factor B are different. The details
are described in the notes on “Post-hoc comparisons”.

• In one way analysis of variance there is one factor. In two way ANOVA there
are two factors. In general there may be several factors, and the analysis of
variance extends to that case, but we will limit our discussion in this course to
one and two way ANOVA.
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Blocking

Example: A new drug is being tested which is supposed to boost the average
immune response to infection.

One scenario for a randomized controlled study is as follows:

• sample individuals from a population

• randomly assign individuals in the sample to the new treatment or to a control

• challenge the individuals with an antigen (eg a flu vaccine), and measure anti-
body levels 2 months later

• use a t-test to compare the mean antibody levels in the two groups. In the case
there are several treatment groups (corresponding, say, to different doses of the
treatment drug), use oneway ANOVA to compare the means of the associated
groups.

A problem with this design is that it is known that a variety of factors affect the
immune response. In particular, the immune response (more specifically, the pro-
duction of antibodies) is known to be depressed in smokers, and so, even if the
treatment is effective at increasing the average immune response, if the treatment
group is dominated by smokers relative to the control group, the positive effect of
the treatment will be masked.

Therefore, we would like to include smoker vs non-smoker as a second factor. The
problem is that we have no way to randomly assign levels of this second factor to the
experimental units (the subjects). Formally, groups of experimental units which are
expected to be similar are referred to as blocks, and the associated factor is referred
to as a blocking factor. By including the blocking factor in our experimental design
we remove the variation (in the outcome variable) attributable to different values of
the blocking factor.
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In essence, we replace the anova table:

Source DF SS MS F
Treatments I-1 SStr MStr MStr/MSE1

Error1 n-I SSE1 MSE1

Total n-1 SST

by the table:

Source DF SS MS F
Treatments I-1 SStr MStr FobsTr = MStr/MSE2

Blocks J-1 SSblocks MSblocks FobsBlocks = MSblocks/MSE2

Error2 n-I-J+1 SSE2 MSE2

Total n-1 SST

where

• SSE1 = SSE2 + SSblocks

• n− i = (n− I − J + 1) + (j − 1)

When we have included the blocking factor:

1. To test the hypothesis that there is no effect of the treatment, the p-value is
P (Fi−1,n−I−J+1 > FobsTr).

2. Was the blocking effective? More formally, are the response means different
across levels of the blocking factor. To test this, the p-value is P (FJ−1,n−I−J+1 >
FobsBlocks).

Thus, inclusion of a blocking factor in a single factor experiment leads us to a two
factor experiment, which we analyse using 2-way ANOVA, where one of the factors
is of a special type a blocking factor that cannot be randomly allocated to
experimental units.


