
Chapter 3

Autocovariance and Autocorrelation

If the {Xn} process is weakly stationary, the covariance of Xn and
Xn+k depends only on the lag k. This leads to the following definition
of the “autocovariance” of the process:

γ(k) = cov(Xn+k, Xn) (3.1)

Questions:

1. What is the variance of the process in terms of γ(k)?

2. Show γ(0) ≥ |γ(k)| for all k.

3. Show γ(k) is an even function i.e. γ(−k) = γ(k).

The autocorrelation function, ρ(k), is defined by

ρ(k) =
γ(k)

γ(0)
(3.2)

This is simply the correlation between Xn and Xn+k. Another
interpretation of ρ(k) is the optimal weight for scaling Xn into a
prediction of Xn+k i.e. the weight, a say, that minimizes E(Xn+k −
aXn)2.
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There are additional constraints on γ(k) beyond symmetry and
maximum value at zero lag. To illustrate, assume Xn and Xn+1 are
perfectly correlated, Xn+1 and Xn+2 perfectly correlated. It is clearly
nonsensical to set the correlation between Xn and Xn+2 to zero.

To obtain the additional constraints define the p× 1 vector

X ′ = [Xn+1, Xn+2, . . . , Xn+p]

and a set of constants

a′ = [a1, a2, . . . ap]

Consider now the following linear combination of the elements of X :

Z =
∑

aiXi = a′X

The variance of Z is a′ΣXXa where ΣXX is the p × p covariance
matrix of the random vector X . (I’ll discuss this in class.) If {Xn}
is a stationary random process ΣXX has the following special form:

ΣXX = σ2



1 ρ(1) ρ(2) . . . ρ(p− 1)
ρ(1) 1 ρ(1) . . . ρ(p− 2)
ρ(2) ρ(1) 1 . . .

... . . . ρ(1)
ρ(p− 1) ρ(1) 1


The variance of Z cannot be negative and so a′ΣXXa ≥ 0 for all
nonzero a. We say ΣXX is a “positive semi-definite”. This implies

n∑
r=1

n∑
s=1

arasρ(r − s) ≥ 0

We will return to this condition later in the course after we have
discussed power spectra.
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3.1 Autocovariances of Some Special Processes

1. The Purely Random Process: This process has uncorre-
lated, zero-mean, random variables with constant variance. It
is usually denoted by {εn} and its mean, variance and auto-
covariance are given by

E(εn) = 0
var(εn) = σ2

ρ(k) = 0 k %= 0
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Figure 3.1: Five realizations from a purely random (Gaussian) process.
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2. The AR(1) Process: This is the skater example with a purely
random process for the forcing. The mean is zero, the variance
is σ2/(1− a2) and the autocorrelation is a|k|.

3. Sums and Differences

Question: What is the variance and autocorrelation of Xn+Xn−1

and Xn − Xn−1 if {Xn} is a stationary random process with
variance σ2 and autocorrelation ρ(k)? Interpret for the special
case of an AR(1) process as a → 1.

4. The Moving Average Process, MA(q): This is just a
weighted average of a purely random process:

Xn = b0εn + b1εn−1 + . . . + bqεn−q

The mean, variance and autocorrelation of the MA(p) process
are given by

E(Xn) = 0
var(Xn) = σ2(b2

0 + b2
1 + . . . b2

q)

and

ρ(k) =
b0bk + b1bk+1 + . . . bq−kbq

b2
0 + b2

1 + . . . b2
q

1 ≤ k ≤ q

and zero otherwise (see page 26, 104 of Shumway and Stoffer).

Question: What is the variance and autocorrelation of the MA(q)
process when the weights are equal? Plot the autocorrelation
function.
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3.2 Estimation of Autocovariance

Assume we have 2N + 1 observations1 of the stationary random
process {Xn}:

X−N, X−N+1, . . . X−1, X0, X1, . . . XN−1, XN

The natural estimate of autocovariance is based on replacing en-
semble averaging by time averaging:

γ̂XX(k) =
1

2N + 1

N−k∑
n=−N

(Xn+k −X)(Xn −X) k ≥ 0 (3.3)

To simplify the following discussion of the properties of this es-
timator, assume the process has zero mean and use the following
simplified estimator:

γ̂(k) =
1

2N + 1

N∑
n=−N

Xn+kXn (3.4)

Question: Show E γ̂(k) = γ(k) i.e. the estimator is unbiased.

The covariance between the estimator for lag k1 and k2 is

cov(γ̂(k1), γ̂(k2)) = E(γ̂(k1)γ̂(k2))− γ(k1)γ(k2) (3.5)

The first term on the right hand-side of (3.5) is the expected value
of

γ̂(k1)γ̂(k2) =
1

(2N + 1)2
N∑

u=−N

N∑
v=−N

Xu+k1XuXv+k2Xv

1We assume an odd number of observations because it makes the math easier in the frequency domain.
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How do we deal with these messy, quadruple products? Turns
out that if the process is normal (i.e. any collection of {Xn} has
a multivariate normal distribution - see page 550 of Shumway and
Stoffer - I’ll discuss in class) we can take advantage of the following
result:

If Z1 through Z4 have a multivariate normal distribution with zero
mean:

E(Z1Z2Z3Z4) = E(Z1Z2)E(Z3Z4)+E(Z1Z3)E(Z2Z4)+E(Z1Z4)E(Z2Z3)

Using this result the quadruple product breaks down into simpler
terms that can be described with autocovariance functions. It is then
possible (see page 515 of Shumway and Stoffer, page 326 of Priestley))
to obtain the following approximation for large sample sizes:

cov(γ̂(k1), γ̂(k2)) ≈
1

2N + 1

∞∑
s=−∞

γ(s)γ(s + k1 − k2) + γ(k1 + s)γ(k2 − s) (3.6)

Setting k1 = k2 we get the variance of the sample autocovariance:

var(γ̂(k)) ≈ 1

2N + 1

∞∑
s=−∞

γ2(s) + γ(k + s)γ(k − s) (3.7)

These are extremely useful formulae that allows us to estimate vari-
ance and covariances of the sample autocovariance functions. As we
will see on the next page, they will help us avoid over-interpreting
sample autocovariance functions.
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Don’t Over Interpret Wiggles in the Tails

The (asymptotic) covariance of the sample autocovariance is

cov(γ̂(k+m), γ̂(k)) ≈
1

2N + 1

∞∑
s=−∞

γ(s)γ(s + m) + γ(k + m + s)γ(k − s)

Assume γ(k) = 0 for k > K, i.e. the system has limited memory.
As we move into the tails (k → ∞, m > 0) it is straightforward to
show that the second product drops out (I’ll draw some pictures in
class) to give

cov(γ̂(k + m), γ̂(k)) → 1

2N + 1

∞∑
s=−∞

γ(s + m)γ(s)

Thus neighboring sample covariances will, in general, be correlated,
even at lags where the true autocovariance is zero i.e. k > K. In
other words we can expect the structure in γ̂(k) to “damp out” less
quickly than γ(k).

If we put m = 0 in this formula we obtain the (asymptotic) vari-
ance of the sample autocovariance in the tails. Note it too does not
go to zero. (What does it tend to?)

Bottom line: Watch out for those wiggly tails in the autocovariance-
they may not be real!

The following Matlab code generates a realization of length N =
500 from an AR(1) process with an autoregressive coefficient a = 0.6.
The sample and theoretical autocovariances are then plot over each
other. Use the above results to interpret this figure.
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a=0.6; N=500; Nlags=50;

x=randn(1);
X=[x];
for n=1:N

x=a*x+randn(1)*sqrt(1-a^2);
X=[X; x’];

end

[Acf,lags]=xcov(X,Nlags,’biased’);
plot(lags,Acf,’k-’,lags,a.^abs(lags),’r-’)
xlabel(’Lags’);

legend(’Sample AutoCovariance’,’True AutoCovariance’)
grid
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Figure 3.2: Sample and theoretical autocovariance functions for an AR(1) process with
a = 0.6. The realization is of length N = 500. The important point to note is that the
wiggles in the tails are due entirely to sampling variability - they are not real in the sense
they do not reflect wiggles in the tails of the true autocovariance function, γ(k).
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3.3 Estimation of the Autocorrelation Function

The estimator for the theoretical autocorrelation, ρ(k), is

ρ̂(k) =
γ̂(k)

γ̂(0)

where γ̂(k) is the sample autocovariance function discussed above.

This estimator is the ratio of two random quantities, γ̂(k) and
γ̂(0), and so it should be no surprise that its sampling distribution
is more complicated than that of γ̂(k).

If the process is Gaussian process and the sample size is large, it
can be shown (page 519 of Shumway and Stoffer)

cov [ρ̂(k + m), ρ̂(k)] ≈
1

2N + 1

∞∑
s=−∞

ρ(s)ρ(s+m)+ρ(s+k+m)ρ(s−k)+2ρ(k)ρ(k+m)ρ2(s)

− 2ρ(k)ρ(s)ρ(s− k −m)− 2ρ(k + m)ρ(s)ρ(s− k)

This is a messy formula (don’t bother copying onto you exam cheat
sheets) but it yields useful information, particularly when we make
some simplifying assumptions.

Question: if {Xn} is a purely random process show that for large
sample sizes

varρ̂(k) ≈ 1

2N + 1
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It can be shown more generally that, for large sample size, the
sampling distribution of ρ̂(k) is approximately normal with mean
ρ(k) (the estimator is unbiased) and variance by the above equation
with m = 0. If we evaluate the variance of ρ̂(k) by substituting the
sample autocorrelation or a fitted model, we can calculate confidence
intervals for ρ(k) in the usual way.

We can also calculate approximate 5% significance levels for zero
correlation using ±1.96/

√
2N + 1. (Be careful of the problems of

multiple testing however.)
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Figure 3.3: Sample auto correlation functions for a purely random process. The realization
is of length 500. The dotted lines show the 5% significance levels of zero correlation.
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