
Chapter 4

Power Spectral Density

Let {Xn} denote a weakly stationary random process with an auto-
covariance function that dies out “sufficiently quickly” in the sense1

∞∑
k=−∞

|γ(k)| <∞ (4.1)

If (4.1) is satisfied,

h(ω) =
1

2π

∞∑
k=−∞

γ(k) e−iωk − π ≤ ω ≤ π (4.2)

exists and is called the “power spectral density”.

It is straightforward to show (make sure you can)2

γ(k) =
∫ π

−π
h(ω)eiωkdω k = 0,±1,±2 . . . (4.3)

γ(k) and h(ω) are a “Fourier Transform pair”. Given one we
can recover the other. They provide complementary, but equivalent,
information on {Xn} in the lag (k) and frequency (ω) domains.

1
∑∞

1 k−2 is convergent and
∑∞

1 k−1 is divergent. Thus k−1 does not die out quickly enough with
increasing k for the sum to exist. An example of such a stationary random process is the harmonic process.

2Multiply (4.2) by eiωl, and integrate from −π to π, to give∫ π

−π
h(ω)eiωldω =

∞∑
k=−∞

γ(k)
1
2π

∫ π

−π
e−iω(k−l)dω =

∞∑
k=−∞

γ(k)δkl = γ(l)
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Setting k = 0 in (4.3) gives the following expression for the vari-
ance of a process in terms of its power spectral density:

σ2
X =

∫ π

−π
h(ω)dω (4.4)

!! !" !# $ # " !
$

"

%

&

'

#$

()*+,*-./

012*)345*.6)7839*-:;6/31<37-3=>?#@30)1.*::32;6A37B$CD

Figure 4.1: Power spectral density of an AR(1) process with a = 0.7. Frequency ω ranges
from −π to π. (Note that a frequency of π corresponds to a period of 2∆.)

We will see that if 0 ≤ ω1 < ω2 ≤ π then 2
∫ ω2
ω1

h(ω)dω is the
contribution to the variance from variations with frequencies between
ω1 and ω2.

Spectral density gives a breakdown of variance
with respect to frequency.

29



4.1 Interpreting Power Spectral Density

One way to interpret power spectral density is based on the “finite
Fourier transform” of X−N, . . . XN :

ζ(ωk) =

√
∆ω

2π

N∑
n=−N

e−iωknXn (4.5)

∆ω =
2π

2N + 1
, ωk = k ∆ω =

2π

(2N + 1)/k
(4.6)

It is straightforward to recover the X from the ζ :3

Xn =
N∑

k=−N
eiωkn ζ(ωk)

√
∆ω (4.7)

Thus the finite Fourier transform, and its inverse, allows us to move
between the time and frequency domains with no loss of information:

{X−N . . . X0 . . . XN}←→ {ζ−N . . . ζ0 . . . ζN}

Any complex number can be written in polar form4 and so

ζ(ωk) = |ζ(ωk)|eiφk

and thus (4.7) can be written as the following sum of cosines:

Xn =
N∑

k=−N
cos(ωkn + φk) |ζ(ωk)|

√
∆ω (4.8)

Question: How many amplitudes and phases are needed to re-
cover the 2N + 1 X values?

3Multiply (4.5) by exp(iωkm) and sum from k = −N to N (make sure you can do this)
4z = a + ib = |z|eiθ
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If E(Xn) = 0, the standard estimator for the variance is

s2
X =

1

2N + 1

N∑
n=−N

X2
n (4.9)

If you use (4.8) in (4.9) it is easy to show

s2
X =

N∑
k=−N

|ζ(ωk)|2∆ω (4.10)

This is Parseval’s relation and shows the sample variance can be bro-
ken down into contributions from variations at different frequencies.

To relate variance and power spectral density, take expectations
of both sides of (4.10) to give

σ2
X =

N∑
k=−N

E(|ζ(ωk)|2) ∆ω (4.11)

It can be shown5

E(|ζ(ωk)|2) =
∫ π

−π
FN(θ − ωk)h(θ)dθ (4.12)

where FN is the “Fejer kernel” (Priestley, p400) defined by

FN(θ) =
1

2π

N∑
s=−N

1− |s|
N

 cos(sθ)

The Fejer kernel is like a “spectral window” through which we view
the power spectral density.

5To relate E(|ζ(ωk)|2) to h(ω) take expectations of

|ζ(ωk)|2 = ζ(ωk)ζ(ωk)∗ =
∆ω

4π2

N∑
n=−N

e−iωknXn

N∑
m=−N

eiωkmXm
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The Fejer kernel is plotted in Figure 4.2. Note that as N → ∞
the Fejer kernel tends to a delta function and thus E(|ζ(ωk)|2) tends
to h(ω). From (4.8) we see that the power spectral density tells us
about the expected magnitude of the sinusoids making up the time
series. From (4.11) we see that power spectral density provides a
breakdown of the variance with respect to frequency.
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Figure 4.2: Fejer kernel for N = 5 and 10. The first node is at ω = 2π/N and gives a
measure of the width of this “spectral window”. As N →∞ the window becomes narrower
and the Fejer kernel approaches a delta function.

Also note that as N →∞ the ωk become dense over (−π, π) and
the sum (4.11) approaches the integral (4.4).
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Let’s find the power spectral densities of a couple of simple sta-
tionary random processes.

Purely Random Process: Show that the power spectral
density is

h(ω) =
σ2

2π

The AR(1) Process: The process is defined by

Xn = aXn−1 + εn

where {εn} is a purely random process with variance σ2. Show

h(ω) =
σ2

2π
|1− ae−iω|−2
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Figure 4.3: Power spectral density of an AR(1) process with a = 0.7. Frequency ω ranges
from −π to π. How would this plot change if a = −0.7 and what would typical realizations
look like?
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4.2 Spectral Representation

The spectral representation is a very useful device for describing sta-
tionary random processes in the frequency domain and calculating
quantities like power spectra and cross spectra. It’s worth learning
what it means and how to use it.

We have seen that {X−N . . . XN} can be written in the form

Xn =
N∑

k=−N
eiωkn ζ(ωk)

√
∆ω n = −N, . . . N (4.13)

Consider the limit of (4.13) as N → ∞. The ωk will become
denser over the interval (−π, π) and we can envision (4.13) being
replaced by an integral of the form

Xn =
∫ π

−π
eiωndZ(ω)

where dZ(ω) plays the role of ζ(ωk)
√

∆ω. This idea leads to an ex-
tremely important and useful representation of a stationary random
process. It is summarized in the following theorem (see page 536, Ap-
pendix C of Shumway and Stoffer) which describes the Spectral
Representation Of Stationary Random Processes:

Let {Xn} denote a zero-mean stationary random process. Then
there exists a random orthogonal increment process dZ(ω) defined on
(−π, π) such that

Xn =
∫ π

−π
eiωndZ(ω)

The random orthogonal increment process dZ(ω) has zero mean,
E(|dZ(ω)|2) = h(ω)dω and E [dZ(ω1)dZ∗(ω2)] = 0 for ω1 (= ω2.
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4.3 Power Spectra of Some Simple Systems

Let {Xn} denote a zero-mean stationary random process with power
spectral density h(ω).

1. The AR(1) Process:

Assume {Xn} is an AR(1) process of the form Xn = aXn−1 + εn

where {εn} is a purely random process with variance σ2.

Assume
Xn =

∫ π

−π
eiωndZX(ω)

εn =
∫ π

−π
eiωndZε(ω)

Substituting these forms into the updating equation for Xn gives

∫ π

−π
eiωn(1− ae−iω)dZX(ω) =

∫ π

−π
eiωndZε(ω)

For this equation to hold we require

(1− ae−iω)dZX(ω) = dZε(ω)

Multiplying each side of this equation by its complex conjugate
and taking expectations gives

|1− ae−iω|2h(ω) = hεε(ω)

and thus

h(ω) =
σ2

2π
|1− ae−iω|−2
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2. The ARMA(k, l) process:

This process is defined by

Xn + a1Xn−1 + . . . akXn−k = b0εn + b1εn−1 . . . + blεn−l (4.14)

where {εn} is a purely random process. Conditions for asymp-
totic stationarity are the same as those for stationarity of the
AR(k) part of the model.

Using the spectral representation it is straightforward to show
the power spectral density of the ARMA(k, l) process is

h(ω) =
σ2

2π

|b0 + b1e−iω + . . . + ble−iωl|2
|1 + a1e−iω + . . . + ake−iωk|2 (4.15)

The flexibility of this form is one of the reasons the ARMA
model has proved useful in practical applications. It is not used
extensively in oceanography or atmospheric science, probably
because it is not motivated by a relevant physical model.

3. Simple Low Pass Filter:

Yn = (Xn+1 + Xn−1)/2

This corresponds to a running mean of the {Xn}. Clearly {Yn}
is a stationary random process. Using the spectral representation
gives

dZY (ω) = Γ(ω)dZX(ω)

where
Γ(ω) = (eiω + e−iω)/2 = cos(ω)
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Multiplying each side of this equation by its complex conjugate
and taking expectations gives

hY Y (ω) = |Γ|2hXX(ω) = cos2(ω)hXX(ω)

Question: Why is this called a “low pass filter”? Plot assuming
{Xn} is a purely random process. Repeat the analysis for Yn =
(Xn+1 −Xn−1)/2. Why is this called a “high pass filter”?
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4.4 Effective Degrees of Freedom

The concept of degrees of freedom, like the spectral representation,
is difficult to understand at first but is worth the effort. It basically
tells us how many useful bits of information are in a sample of au-
tocorrelated observations. One of the surprising things is that the
degrees of freedom depends on the quantity being estimated. We will
use the concept when we look at the estimate power spectral density.

The Sample Mean: Consider first the effective degrees of free-
dom for the sample mean X , which we will assume is based on an
average of N consecutive observations. It is straightforward to show
that if {Xn} is a weakly stationary random process, X is an unbiased
estimator of the mean of the process, and its asymptotic variance is
(derive in class)

var(X) ≈ σ2
X

N

∞∑
s=−∞

ρ(s)

If we had N ∗ independent observations the variance of the sample
mean would be

var(X) ≈ σ2
X

N ∗
Equating these two expressions we obtain the effective degrees of

freedom for the sample mean:

N ∗ =
N∑∞−∞ ρ(s)

If {Xn} is an AR(1) process, the effective degrees of freedom for the
sample mean is

N ∗ = N
1− a

1 + a
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The Sample Autocovariance: Equation (3.6) gives the
variance of the sample autocovariance for large sample size:

var γ̂(k) ≈ 1

N

∞∑
s=−∞

γ2(s) + γ(s + k)γ(s− k)

Consider the special case k = 0. We then have

var(s2
X) ≈ 2σ4

X

N

∞∑
s=−∞

ρ2(s)

For a purely random process

var(s2
X) ≈ 2σ4

X

N ∗

Comparing these two forms leads us to the “effective degrees of
freedom” for the sample variance:

N ∗ =
N∑∞−∞ ρ2(s)

where N is the sample size.

If {Xn} is an AR(1) process then ρ(k) = a|k| and the effective
degrees of freedom or the sample variance is

N ∗ = N
1− a2

1 + a2

Discuss limits an special cases.
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4.5 Estimation of Power Spectral Density

Let {Xn} denote a stationary random process with power spectral
density denoted by h(ω). You might think that |ζ|2 is the “natural”
estimator for h. (It is sometimes called the periodogram.) But there
is a major problem! From the spectral representation

X =
∫ π

−π
eiωndZ(ω)

it is straightforward to show

E(|ζ(ωk)|2) =
∫ π

−π
FN(ω − ωk) h(ω)dω (4.16)

As the record length increases, the Fejer kernel approaches a delta
function and |ζ|2 approaches an unbiased estimator for h. So far, so
good.

Let’s now look at the variance of the estimator, |ζ|2. The finite
Fourier transform of 2N +1 observations can be written ζ = ζR + iζI

where

ζR(ωk) =

√
∆ω

2π

N∑
n=−N

cos(ωkn)Xn

and

ζI(ωk) = −
√

∆ω

2π

N∑
n=−N

sin(ωkn)Xn

If {Xn} is Gaussian, it is straightforward to show (I’ll discuss in
class)

(ζR, ζI) ∼ N(0, Σ)

where Σ is a diagonal matrix with diagonal elements that can be
approximated by h/2 for large sample sizes.
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Noting that
|ζ|2 = ζ2

R + ζ2
I

it follows that, for large sample sizes, we have the approximation

|ζ|2 ∼ 1

2
h(ω)χ2

2

The mean and variance of a χ2
ν random variable are ν and 2ν thus

the variance of our estimator (ν = 2, i.e. 2 degrees of freedom) is

var(|ζ|2) ≈ h2(ω)

Here’s the problem: The variance does not go to zero as N →∞.

The natural way around this problem is to evaluate |ζ(ωk)|2 for
k = −N, . . . N and then smooth with a “spectral window”. In
general, the wider the spectral window the greater the reduction in
the variance of the spectral estimator (the “degrees of freedom” of
the spectral estimator increases) but the “bias” increases. (The same
trade off occurs when estimating a probability density function with
a histogram.) I’ll show some examples in class.

There are many spectral windows. (A Parzen window is used in
my crosspec.m listed on the next two pages.) In my experience the
width of the spectral window matters (shown as the blue horizontal
line on the power spectral panel of crosspec output) but the shape
of the window does not.

In practice chose the bandwidth by “window closing”: examining
the stability of the estimated spectra while gradually closing the
window (and hence reducing reliability). I’ll show some examples
in class.
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Below I list a simple cross spectral program written in Matlab
(crosspec.m) to smooth the periodogram using a Parzen spectral
window. The width of the window is controlled by the input pa-
rameter, M . I usually take M to be about one tenth of the record
length. Increasing M narrows the spectral window and vice versa.
(M is the truncation point of the corresponding ‘lag window’.)
function CROSS = crosspec(M,x,y,dt,plotit,omlim);

% CROSS = crosspec(M,x,y,dt,plotit,omlim);
% where on output CROSS = [freq Pxx Pyy K P Pxy].
% Replaces missing values (indicated by nan) by nanmean. Removes mean.
% Provides plot if nargin==5.
% Based on an M point Parzen window.
% See Priestley p444 for definition of Parzen window, p564 for plot.
% For Parzen window degrees of freedom equals 3.708614*N/M (p467)
% Bandwidth is 12/M, p527.
% omlim is the upper frequency limit on the spectral plots.

I=find(isnan(x)==1); x(I)=nanmean(x); x=x-mean(x);
I=find(isnan(y)==1); y(I)=nanmean(y); y=y-mean(y);

n=length(x);
if rem(n,2)==1
x=x(1:n-1);
y=y(1:n-1);
end

x=x(:); y=y(:);

DX = fft(x);
DX = DX(:);
DY = fft(y); DY = DY(:);
n = length(DX);
delOmega = 2*pi/n; p = floor(2*n/M);
Omega = (-p:p)*delOmega +.00000000001;
Omega = Omega(:);
freq = [0:delOmega:pi];
freq = freq(:);
W = (sin(M*Omega/4)./sin(Omega/2)).^4.*(1-2/3*sin(Omega/2).^2).*6/(pi*M^3);
W = W/(sum(W)*delOmega);
W = W(:);
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% compute the x power spectrum
INSTX = DX.*conj(DX);
INSTARTX = [INSTX(n-p+2:n);
INSTX(1:n/2+p+1)];
Pxx = delOmega*conv(INSTARTX,W)/(2*pi*length(x));
Pxx = Pxx(:);
Pxx = 2*Pxx(2*p:n/2+2*p);

% compute the y power spectrum
INSTY = DY.*conj(DY);
INSTARTY = [INSTY(n-p+2:n);
INSTY(1:n/2+p+1)];
Pyy = delOmega*conv(INSTARTY,W)/(2*pi*length(x));
Pyy = Pyy(:);
Pyy = 2*Pyy(2*p:n/2+2*p);

% compute the cross spectrum
INSTXY = DX.*conj(DY);
INSTARXY = [INSTXY(n-p+2:n);
INSTXY(1:n/2+p+1)];
Pxy = delOmega*conv(INSTARXY,W)/(2*pi*length(x));
Pxy = Pxy(:);
Pxy = 2*Pxy(2*p:n/2+2*p);

% compute the phase spectrum
P = atan2(-imag(Pxy),real(Pxy));
% compute the coherency spectrum
K = abs(Pxy)./sqrt(Pxx.*Pyy);
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