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Definition 1. The orthogonal complement of a subspace U ⊆ V is the subset U⊥

of all vectors orthogonal to vectors in U :

U⊥ = {v ∈ V : ⟨u, v⟩ = 0 for all u ∈ U}.

Exercise 2. Use the axioms of inner products to check that U⊥ is also a subspace of V .

Exercise 3. Convince yourself that the orthogonal a plane in R3 containing the origin
is the line through the origin perpendicular to that plane.

The following is crucial:

Proposition 4. Let U ⊆ V be a subspace. Given a vector v ∈ V , there exist unique
vectors u ∈ U and w ∈ U⊥ such that v = u+ w.

Proof. Take an orthonormal basis e1, . . . , em of U , and extend it to an orthonormal basis
of V by adding vectors f1, . . . , fn.1 We will show that f1, . . . , fn is a basis for U⊥, in
which case the decomposition

v = a1e1 + · · ·+ anen︸ ︷︷ ︸
u∈U

+ b1f1 + · · ·+ bmfm︸ ︷︷ ︸
w∈U⊥

is the desired (unique decomposition).
Well, since e1, . . . , em, f1, . . . , fn is an orthonormal basis of V . In particular, this

means that for any u ∈ U we have

⟨u, fi⟩ = ⟨a1e1 + · · ·+ anen, fi⟩
= ⟨a1e1, fi⟩+ · · ·+ ⟨amem, fi⟩
= a1⟨a1e1, fi⟩+ · · ·+ am⟨em, fi⟩
= 0,

where in the last line we use that the basis is orthogonal. But this means, by definition,
that fi ∈ U⊥. That’s what we wanted.

Definition 5. Let U ⊆ V be a subspace. The orthogonal projection is the operator
PU : V → V defined as follows: Given a vector v ∈ V , use the previous lemma to
decompose it as v = u+ w, where u ∈ U and v ∈ U⊥.Then PU (v) = u.

Exercise 6. Use the axioms of inner products to check that PU is indeed a linear
transformation.

Lemma 7. rangePU = U and kerPU = U⊥

1We can do these steps because of Gram-Schmidt.



Proof. The image of PU is clearly contained in U , and it is the identity on U , so the
image is U itself.

If PU (v) = 0, then u = 0 in the decomposition v = u+w, where u ∈ U and w ∈ U⊥.
But then v ∈ U⊥.

Exercise 8. Conclude that dimU⊥ = dimV − dimU . Compare this with Exercise 3.

Corollary 9. PU is self adjoint, i.e. ⟨PU (v), v
′⟩ = ⟨v, PU (v

′)⟩ for all v, v′ ∈ V .

Proof. Decompose v = u+w and v′ = u′ +w′, where u, u ∈ U and w,w′ ∈ U⊥. On one
hand

⟨PU (v), v
′⟩ = ⟨u, u′ + w′⟩
= ⟨u, u′⟩+ ⟨u,w′⟩.
= ⟨u, u′⟩.

On the other,

⟨u, PU (v
′)⟩ = ⟨u+ w, u′⟩

= ⟨u, u′⟩+ ⟨w, u′⟩
= ⟨u, u′⟩.

The expressions are the same!

Given a vector v ∈ V and a subspace U ⊆ U , here is an extremely natural question:
what’s the smallest distance between v and U? That is, what is the vector

Our intuition in 3d tells that this minimum is achieved by studying the decomposition
v = u+w, where u ∈ U and w ∈ U⊥. The minimum should be ∥w∥ = ∥v − u∥. Indeed:

Proposition 10. Let v ∈ V and v = u + w, where u ∈ U and w ∈ U⊥. Let u′ ∈ U be
another vector in U . Then ∥v − u∥ ≤ ∥v − u′∥.
Proof.

∥v − u∥2 ≤ ∥v − u∥2 + ∥u− u′∥2

≤ ∥v − u+ u− u′∥2

= ∥v − u′∥,

where we used Pythagoras (why are v − u and u− u′ orthogonal?).

So to find minimize the distance between v and U we calculate PU (v). If we pick an
orthonormal basis B = e1, . . . , en for U , we have a formula for that2

PU (v) = ⟨v, e1⟩e1 + · · ·+ ⟨v, en⟩en =

⟨v, e1⟩...
⟨v, en⟩


B

.

The nice thing about this formula is that it typechecks even when V is infinite dimen-
sional. For instance let V = C0([0, 1]), the vector space of continuous functions, and
consider the subspace space spanned by the functions 1, sin(x), cos(x):

U = span(1, sin(x), cos(x)).

Then the projection of any other function f(x) ∈ V is given by

PU (f)(x) =

∫ 1

0
f(x)dx+ sinx

∫ 1

0
f(x) sinxdx+ cosx

∫ 1

0
f(x) cosxdx.

The coefficients above are just inner products. This kind of reasoning explains the Fourier
transform which you might study later on. This is very important for electronics, etc.

2To convince yourself of this, pick a basis of U , and extend it to V .
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