Orthogonal complements & projections

Matrix Theory & Linear Algebra II

Definition 1. The orthogonal complement of a subspace $U \subseteq V$ is the subset U^{\perp} of all vectors orthogonal to vectors in U:

$$U^{\perp} = \{ v \in V : \langle u, v \rangle = 0 \text{ for all } u \in U \}.$$

Exercise 2. Use the axioms of inner products to check that U^{\perp} is also a subspace of V.

Exercise 3. Convince yourself that the orthogonal a plane in \mathbb{R}^3 containing the origin is the line through the origin perpendicular to that plane.

The following is crucial:

Proposition 4. Let $U \subseteq V$ be a subspace. Given a vector $v \in V$, there exist unique vectors $u \in U$ and $w \in U^{\perp}$ such that v = u + w.

Proof. Take an orthonormal basis e_1, \ldots, e_m of U, and extend it to an orthonormal basis of V by adding vectors f_1, \ldots, f_n .¹ We will show that f_1, \ldots, f_n is a basis for U^{\perp} , in which case the decomposition

$$v = \underbrace{a_1e_1 + \dots + a_ne_n}_{u \in U} + \underbrace{b_1f_1 + \dots + b_mf_m}_{w \in U^\perp}$$

is the desired (unique decomposition).

Well, since $e_1, \ldots, e_m, f_1, \ldots, f_n$ is an orthonormal basis of V. In particular, this means that for any $u \in U$ we have

$$\langle u, f_i \rangle = \langle a_1 e_1 + \dots + a_n e_n, f_i \rangle$$

= $\langle a_1 e_1, f_i \rangle + \dots + \langle a_m e_m, f_i \rangle$
= $a_1 \langle a_1 e_1, f_i \rangle + \dots + a_m \langle e_m, f_i \rangle$
= 0,

where in the last line we use that the basis is orthogonal. But this means, by definition, that $f_i \in U^{\perp}$. That's what we wanted.

Definition 5. Let $U \subseteq V$ be a subspace. The orthogonal projection is the operator $P_U: V \to V$ defined as follows: Given a vector $v \in V$, use the previous lemma to decompose it as v = u + w, where $u \in U$ and $v \in U^{\perp}$. Then $P_U(v) = u$.

Exercise 6. Use the axioms of inner products to check that P_U is indeed a linear transformation.

Lemma 7. range $P_U = U$ and ker $P_U = U^{\perp}$

¹We can do these steps because of Gram-Schmidt.

Proof. The image of P_U is clearly contained in U, and it is the identity on U, so the image is U itself.

If $P_U(v) = 0$, then u = 0 in the decomposition v = u + w, where $u \in U$ and $w \in U^{\perp}$. But then $v \in U^{\perp}$.

Exercise 8. Conclude that $\dim U^{\perp} = \dim V - \dim U$. Compare this with Exercise 3.

Corollary 9. P_U is self adjoint, i.e. $\langle P_U(v), v' \rangle = \langle v, P_U(v') \rangle$ for all $v, v' \in V$.

Proof. Decompose v = u + w and v' = u' + w', where $u, u \in U$ and $w, w' \in U^{\perp}$. On one hand

On the other,

$$\langle u, P_U(v') \rangle = \langle u + w, u' \rangle$$

= $\langle u, u' \rangle + \langle w, u' \rangle$
= $\langle u, u' \rangle.$

The expressions are the same!

Given a vector $v \in V$ and a subspace $U \subseteq U$, here is an *extremely natural question*: what's the smallest distance between v and U? That is, what is the vector

Our intuition in 3d tells that this minimum is achieved by studying the decomposition v = u + w, where $u \in U$ and $w \in U^{\perp}$. The minimum should be ||w|| = ||v - u||. Indeed: **Proposition 10.** Let $v \in V$ and v = u + w, where $u \in U$ and $w \in U^{\perp}$. Let $u' \in U$ be another vector in U. Then $||v - u|| \le ||v - u'||$.

Proof.

$$||v - u||^{2} \le ||v - u||^{2} + ||u - u'||^{2}$$
$$\le ||v - u + u - u'||^{2}$$
$$= ||v - u'||,$$

where we used Pythagoras (why are v - u and u - u' orthogonal?).

So to find minimize the distance between v and U we calculate $P_U(v)$. If we pick an orthonormal basis $\mathcal{B} = e_1, \ldots, e_n$ for U, we have a formula for that²

$$P_U(v) = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n = \begin{bmatrix} \langle v, e_1 \rangle \\ \vdots \\ \langle v, e_n \rangle \end{bmatrix}_{\mathcal{B}}$$

The nice thing about this formula is that it typechecks even when V is infinite dimensional. For instance let $V = C^0([0,1])$, the vector space of continuous functions, and consider the subspace space spanned by the functions 1, $\sin(x)$, $\cos(x)$:

$$U = \operatorname{span}(1, \sin(x), \cos(x)).$$

Then the projection of any other function $f(x) \in V$ is given by

$$P_U(f)(x) = \int_0^1 f(x)dx + \sin x \int_0^1 f(x)\sin x dx + \cos x \int_0^1 f(x)\cos x dx.$$

The coefficients above are just inner products. This kind of reasoning explains the *Fourier* transform which you might study later on. This is very important for electronics, etc.

²To convince yourself of this, pick a basis of U, and extend it to V.