Matrix Theory & Linear Algebra II

Practice Midterm I

Your name:

Banner ID:

- 1. (40 points) In this question you are presented with three statements. *Every one of them is wrong.* For each one, give a short (one or two sentences) explanation of why.
 - (a) Complex conjugation, defined by $\overline{a+bi} = a bi$, is a linear transformation $\mathbb{C} \to \mathbb{C}$.
 - (b) The set 2×2 invertible real matrices

$$GL(2,\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{R}, ad - bc \neq 0 \right\}$$

is a subspace of $M_{2,2}(\mathbb{R})$.

- (c) If $\{v_1, v_2, v_3\}$ and $\{w_1, w_2, w_3\}$ are linearly independent sets of vectors in a vector space V, then $\{v_1 + w_1, v_2 + v_2, v_3 + w_3\}$ is also linearly independent.
- 2. (30 points) For each of the following questions, draw a small sketch representing the corresponding operation.
 - (a) Find the matrix for the linear transformation that reflects every vector in \mathbb{R}^2 about the line y = x.
 - (b) Find the matrix for the linear transformation that stretches \mathbb{R}^2 by a factor of 4 in the vertical direction.
 - (c) Find the matrix for the linear transformation that performs the operation described in (b), followed by the operation described in (a).
- 3. (30 points) An **eigenvector** for a linear operator $T: V \to V$ is a vector $v \in V$ such that $T(v) = \lambda \cdot v$ for some scalar $\lambda \in \mathbb{F}$. An **eigenbasis** for T is a basis in which every vector is an eigenvector.

Let $\mathcal{P}_3(\mathbb{C})$ denote the complex vector space of complex polynomials, and denote by $U : \mathcal{P}_2(\mathbb{C}) \to \mathcal{P}_2(\mathbb{C})$ the linear transformation defined by

$$U(a + bx + cx^{2}) = (a - b) + (a + b)x.$$

- (a) The set $\{i + x, -i + x, x^2\}$ is a basis for $\mathcal{P}_2(\mathbb{C})$. Show that this basis is in fact an eigenbasis for U, and write down the matrix for U in this basis. Hint: i - 1 = i(i + 1) and $i + 1 = -i \cdot (i - 1)$.
- (b) What is the dimension of the null space of U? What is the dimension of its range?