
Problem Set 4

Matrix Theory & Linear Algebra II

(1) Suppose T ∈ L(V,W ) is invertible. Show that T−1 is invertible and

(T−1)−1 = T.

(2) Suppose T ∈ L(U, V ) and S ∈ L(V,W ) are both invertible linear maps. Prove
that ST ∈ L(U,W ) is invertible and that

(ST )−1 = T−1S−1

Solution. The exercise is asking to show that the inverse of ST is T−1S−1. Indeed,

T−1S−1ST = T−1T = IU .

and

STT−1S−1 = SS−1 = IV .

■

(3) Show that V and L(F, V ) are isomorphic vector spaces.

Solution. It’s easier to construct invertible linear maps than to use dimension ar-
guments. (This problem is still a little wordy.)

On one hand, define a map ϕ : V → L(F, V ) sending a vector v ∈ V to the
linear map ϕv ∈ L(F, V ) defined by ϕv(k) = k · v. On the other, define a map
ψ : L(F, V ) → V sending a linear map f : L(F, V ) to f(1) ∈ V .

Then ψ ◦ ϕ : V → V is the map sending v ∈ V to ϕv(1) = 1 · v = v by linearity, so
it’s the identity map. Additionally, ϕ ◦ ψ : L(F, V ) → L(F, V ) is the map sending
a linear map f ∈ L(F, V ) to the linear map ϕf(1) ∈ L(F, V ), which is defined by
ϕf(1)(k) = k · f(1) = f(k) by linearity. So ϕf(1) = f and ϕ ◦ ψ is an identity
map. ■

(4) Show that Mn×n(F) and Fn2 are isomorphic vector spaces.1

Solution. Both vector spaces have dimension n2, so they are isomorphic. Bonus:
construct an isomorphism. For instance, see the proof in the book that vector
spaces with the same dimension are isomorphic. ■

(5) Show that C and R2 are isomorphic are real vector spaces.
1There was no question in the posted problem set.



Proof. Define a map T : C → R2 defined by T (a + bi) =
[
a//b

]
. Check that it is

linear, and that it has no kernel. Then it is an isomorphism, because both spaces
have the same dimension.

(6) True or false:

(a) Every linear operator in an n-dimensional vector space has n distinct eigen-
values;

(b) If a matrix has one eigenvector, it has infinitely many eigenvectors;

(c) There exists a square real matrix with no real eigenvalues;

(d) There exists a square matrix with no (complex) eigenvectors;

(e) Similar matrices always have the same eigenvalues;

(f) Similar matrices always have the same eigenvectors;

(g) A non-zero sum of two eigenvectors of a matrix A is always an eigenvector;

(h) A non-zero sum of two eigenvectors of a matrix A corresponding to the same
eigenvalue λ is always an eigenvector.

Solution. To each false assertion, there are several counterexamples. I’ll give only
one for each. Yours might be very different.

(a) F, the identity transformation on Fn has only one eigenvalue.

(b) T, any scalar multiple of an eigenvector v is also an eigenvector.

(c) T, any (non-trivial) rotation matrix.

(d) F, any complex linear transformation has an eigenvalue.

(e) T, similar matrices represent the same linear transformation in different bases.
You can also argue that the determinant preserves products of matrices.

(f) F, if M = S−1AS and v is an eigenvector of A, then S−1(v) is an eigenvector
of T , but not v.

(g) F, for instance if the eigenvalues are distinct then the vectors are l.i., so their
sum is in neither eigenspace, so their sum might not be an eigenvector.

(h) T, if v is an eigenvector with eigenvalue λ then T (c · v) = c · T (v) = cλ · v =
λ · (cv).

■

(7) Compute the eigenvalues and eigenvectors of the rotation matrix

A =

[
cosα − sinα
sinα cosα

]
.

Note that the eigenvalues (and eigenvectors) do not need to be real.

Proof. The determinant of A− λI is

det(A−λI) = (cosα−λ)2+(sinα)2 = 1−2 cosα·λ+λ2 = (λ+
√
cosα− 1)+(λ+

√
cosα− 1).

So the solutions to det(A − λI) = 0 are
√
cosα− 1) and

√
cosα+ 1). The eigen-

vectors...
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(8) Let v1,v2, . . . ,vn be a basis in a vector space V . Assume also that the first k
vectors v1,v2, . . . ,vk of the basis are eigenvectors of an operator A, corresponding
to an eigenvalue λ (i.e. that Avj = λvj , j = 1, 2, . . . , k). Show that in this basis
the matrix of the operator A has block triangular form(

λIk ∗
0 B

)
,

where Ik is a k × k identity matrix and B is some (n− k)× (n− k) matrix.

Solution. The j-th column of A is A(vj), so for 1 ≤ j ≤ k we have A(vj) = λj ,
i.e. the only non-zero entry is in the j-th row. The other columns are just generic
columns. ■

(9) An operator A is called nilpotent if Ak = 0 for some k. Prove that if A is nilpotent,
then 0 is the only eigenvalue of A.

Proof. There are two claims: that 0 is an eigenvalue, and that it is the only eigen-
value.

We first prove the latter. Suppose that Ak = 0. If v is an eigenvector with
eigenvalue λ, then Ak(v) = λkv, on the other hand Ak(v) = 0. So λk = 0 =⇒
λ = 0.

Now we show that 0 is an eigenvalue. Let v ∈ V be any nonzero vector. Let ℓ be
the smallest number such that Aℓ(v) = 0. Note that 1 ≤ ℓ ≤ k. If ℓ = 1, then v is
an eigenvector. Otherwise, Aℓ−1(v) ̸= 0 is an eigenvector.

(10) Define T ∈ L(C3) by T (z1, z2, z3) = (2z2, 0, 5z3). Find all eigenvalues and eigen-
vectors of T .

Solution. You can solve also solve this by writing the matrix of T and proceeding
from there.

Suppose v = (x, y, z) is an eigenvector of T with eigenvalue λ. Then

T (v) = λ · v =⇒ (x, y, z) = (λ · 2y, 0, λ · 5z).

So x = λ · 2y, y = 0, and z = λ · 5z. From this you can see that the only solution
is λ = 0, and any vector with only x-coordinate is an eigenvector. Indeed, you can
check that (1, 0, 0) is an eigenvector with eigenvalue 0. ■

(11) Suppose P ∈ L(V ) is such that P 2 = P. Prove that if λ is an eigenvalue of P, then
λ = 0 or λ = 1.

Proof. If P (v) = λ · v, then

P 2(v) = P (P (v)) = P (λ · v) = λ · P (v) = λ · λ · v = λ2 · v.

On the other hand, P 2(v) = P (v) = λ · v. So

λv = λ2v =⇒ (λ− λ2) · v = 0 =⇒ λ− λ2 = 0 =⇒ λ = λ2.

You can also do this problem by a determinant argument.
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