Problem Set 4

Matrix Theory & Linear Algebra II

(1) Suppose $T \in \mathcal{L}(V, W)$ is invertible. Show that T^{-1} is invertible and

$$(T^{-1})^{-1} = T.$$

(2) Suppose $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$ are both invertible linear maps. Prove that $ST \in \mathcal{L}(U, W)$ is invertible and that

$$(ST)^{-1} = T^{-1}S^{-1}$$

Solution. The exercise is asking to show that the inverse of ST is $T^{-1}S^{-1}$. Indeed,

$$T^{-1}S^{-1}ST = T^{-1}T = I_U.$$

and

$$STT^{-1}S^{-1} = SS^{-1} = I_V$$

(3) Show that V and $\mathcal{L}(\mathbb{F}, V)$ are isomorphic vector spaces.

Solution. It's easier to construct invertible linear maps than to use dimension arguments. (This problem is still a little wordy.)

On one hand, define a map $\phi : V \to \mathcal{L}(\mathbb{F}, V)$ sending a vector $v \in V$ to the linear map $\phi_v \in \mathcal{L}(\mathbb{F}, V)$ defined by $\phi_v(k) = k \cdot v$. On the other, define a map $\psi : \mathcal{L}(\mathbb{F}, V) \to V$ sending a linear map $f : \mathcal{L}(\mathbb{F}, V)$ to $f(1) \in V$.

Then $\psi \circ \phi : V \to V$ is the map sending $v \in V$ to $\phi_v(1) = 1 \cdot v = v$ by linearity, so it's the identity map. Additionally, $\phi \circ \psi : \mathcal{L}(\mathbb{F}, V) \to \mathcal{L}(\mathbb{F}, V)$ is the map sending a linear map $f \in \mathcal{L}(\mathbb{F}, V)$ to the linear map $\phi_{f(1)} \in \mathcal{L}(\mathbb{F}, V)$, which is defined by $\phi_{f(1)}(k) = k \cdot f(1) = f(k)$ by linearity. So $\phi_{f(1)} = f$ and $\phi \circ \psi$ is an identity map.

(4) Show that $M_{n \times n}(\mathbb{F})$ and \mathbb{F}^{n^2} are isomorphic vector spaces.¹

Solution. Both vector spaces have dimension n^2 , so they are isomorphic. Bonus: construct an isomorphism. For instance, see the proof in the book that vector spaces with the same dimension are isomorphic.

(5) Show that \mathbb{C} and \mathbb{R}^2 are isomorphic are *real* vector spaces.

¹There was no question in the posted problem set.

Proof. Define a map $T : \mathbb{C} \to \mathbb{R}^2$ defined by $T(a + bi) = \lfloor a//b \rfloor$. Check that it is linear, and that it has no kernel. Then it is an isomorphism, because both spaces have the same dimension.

- (6) True or false:
 - (a) Every linear operator in an n-dimensional vector space has n distinct eigenvalues;
 - (b) If a matrix has one eigenvector, it has infinitely many eigenvectors;
 - (c) There exists a square real matrix with no real eigenvalues;
 - (d) There exists a square matrix with no (complex) eigenvectors;
 - (e) Similar matrices always have the same eigenvalues;
 - (f) Similar matrices always have the same eigenvectors;
 - (g) A non-zero sum of two eigenvectors of a matrix A is always an eigenvector;
 - (h) A non-zero sum of two eigenvectors of a matrix A corresponding to the same eigenvalue λ is always an eigenvector.

Solution. To each *false* assertion, there are *several* counterexamples. I'll give only one for each. Yours might be very different.

- (a) F, the identity transformation on \mathbb{F}^n has only one eigenvalue.
- (b) T, any scalar multiple of an eigenvector v is also an eigenvector.
- (c) T, any (non-trivial) rotation matrix.
- (d) F, any complex linear transformation has an eigenvalue.
- (e) T, similar matrices represent the same linear transformation in different bases. You can also argue that the determinant preserves products of matrices.
- (f) F, if $M = S^{-1}AS$ and v is an eigenvector of A, then $S^{-1}(v)$ is an eigenvector of T, but not v.
- (g) F, for instance if the eigenvalues are distinct then the vectors are l.i., so their sum is in neither eigenspace, so their sum might not be an eigenvector.
- (h) T, if v is an eigenvector with eigenvalue λ then $T(c \cdot v) = c \cdot T(v) = c\lambda \cdot v = \lambda \cdot (cv)$.

(7) Compute the eigenvalues and eigenvectors of the rotation matrix

$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}.$$

Note that the eigenvalues (and eigenvectors) do not need to be real.

Proof. The determinant of $A - \lambda I$ is

$$\det(A - \lambda I) = (\cos \alpha - \lambda)^2 + (\sin \alpha)^2 = 1 - 2\cos \alpha \cdot \lambda + \lambda^2 = (\lambda + \sqrt{\cos \alpha - 1}) + (\lambda + \sqrt{\cos \alpha - 1}).$$

So the solutions to $det(A - \lambda I) = 0$ are $\sqrt{\cos \alpha - 1}$ and $\sqrt{\cos \alpha + 1}$. The eigenvectors...

(8) Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ be a basis in a vector space V. Assume also that the first k vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ of the basis are eigenvectors of an operator A, corresponding to an eigenvalue λ (i.e. that $A\mathbf{v}_j = \lambda \mathbf{v}_j, j = 1, 2, \ldots, k$). Show that in this basis the matrix of the operator A has block triangular form

$$\begin{pmatrix} \lambda I_k & * \\ 0 & B \end{pmatrix},$$

where I_k is a $k \times k$ identity matrix and B is some $(n-k) \times (n-k)$ matrix.

Solution. The *j*-th column of A is $A(v_j)$, so for $1 \le j \le k$ we have $A(v_j) = \lambda_j$, i.e. the only non-zero entry is in the *j*-th row. The other columns are just generic columns.

(9) An operator A is called nilpotent if $A^k = 0$ for some k. Prove that if A is nilpotent, then 0 is the only eigenvalue of A.

Proof. There are two claims: that 0 is an eigenvalue, and that it is the only eigenvalue.

We first prove the latter. Suppose that $A^k = 0$. If v is an eigenvector with eigenvalue λ , then $A^k(v) = \lambda^k v$, on the other hand $A^k(v) = 0$. So $\lambda^k = 0 \implies \lambda = 0$.

Now we show that 0 is an eigenvalue. Let $v \in V$ be any *nonzero* vector. Let ℓ be the smallest number such that $A^{\ell}(v) = 0$. Note that $1 \leq \ell \leq k$. If $\ell = 1$, then v is an eigenvector. Otherwise, $A^{\ell-1}(v) \neq 0$ is an eigenvector.

(10) Define $T \in \mathcal{L}(\mathbb{C}^3)$ by $T(z_1, z_2, z_3) = (2z_2, 0, 5z_3)$. Find all eigenvalues and eigenvectors of T.

Solution. You can solve also solve this by writing the matrix of T and proceeding from there.

Suppose v = (x, y, z) is an eigenvector of T with eigenvalue λ . Then

$$T(v) = \lambda \cdot v \implies (x, y, z) = (\lambda \cdot 2y, 0, \lambda \cdot 5z).$$

So $x = \lambda \cdot 2y$, y = 0, and $z = \lambda \cdot 5z$. From this you can see that the only solution is $\lambda = 0$, and any vector with only x-coordinate is an eigenvector. Indeed, you can check that (1, 0, 0) is an eigenvector with eigenvalue 0.

(11) Suppose $P \in \mathcal{L}(V)$ is such that $P^2 = P$. Prove that if λ is an eigenvalue of P, then $\lambda = 0$ or $\lambda = 1$.

Proof. If $P(v) = \lambda \cdot v$, then

$$P^{2}(v) = P(P(v)) = P(\lambda \cdot v) = \lambda \cdot P(v) = \lambda \cdot \lambda \cdot v = \lambda^{2} \cdot v.$$

On the other hand, $P^2(v) = P(v) = \lambda \cdot v$. So

$$\lambda v = \lambda^2 v \implies (\lambda - \lambda^2) \cdot v = 0 \implies \lambda - \lambda^2 = 0 \implies \lambda = \lambda^2.$$

You can also do this problem by a determinant argument.