Problem Set 5

Matrix Theory & Linear Algebra II

(1) Show that if p is a polynomial with real coefficients and a complex root λ , then $\overline{\lambda}$ is also a root. Conclude that if λ is an eigenvalue of a matrix T with real coefficients, then so is $\overline{\lambda}$.

Solution. For the first part, consider a polynomial with real coefficients.

$$p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$

If w is a complex root of p, i.e.

$$a_0 + a_1 w + a_2 w^2 + \dots + a_n w^n = 0$$

then conjugating this equation yields

$$a_0 + a_1 \bar{w} + a_2 \bar{w}^2 + \dots + a_n \bar{w}^n = 0$$

because conjugation doesn't do anything to a real number. Hence if λ is a root of det(T - cI) (a polynomial with real coefficients), then so is $\overline{\lambda}$. (There is also a minimal polynomial argument you could make.)

(2) Find the (real or complex) eigenvalues and eigenvectors of the following matrices. Diagonalize¹ each matrix if possible by finding a basis of eigenvectors.

$$A = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 1 \\ -1 & 1 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 2 & 0 \\ 1 & -1 & 1 \end{bmatrix}$$

- (3) (a) Suppose $\lambda \in \mathbb{F}$ with $\lambda \neq 0$. Prove that λ is an eigenvalue of T if and only if $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} .
 - (b) Prove that T and T^{-1} have the same eigenvectors.

Solution. (a) If $Tv = \lambda v$ then

$$T^{-1}Tv = T^{-1}(\lambda v) \implies v = \lambda T^{-1}v \implies \frac{1}{\lambda}T^{-1}v$$

So v is an eigenvector of T^{-1} as well, but with eigenvalue $\frac{1}{\lambda}$.

(b) Because of (a) it suffices to show that 0 is not an eigenvector. Indeed, if $Tv = 0 \cdot v$, then

$$Tv = 0 \implies T^{-1}Tv = T0 \implies v = 0.$$

¹To diagonalize M is to find a diagonal matrix D and a matrix S such that $M = SDS^{-1}$

(4) Given the matrix:

$$A = \begin{bmatrix} 2 & 6 & -6 \\ 0 & 5 & -2 \\ 0 & 0 & 4 \end{bmatrix}$$

(a) Find its eigenvalues. Is it possible to find the eigenvalues without computing?

- (b) Is this matrix diagonalizable? Find out without computing anything.
- (c) If the matrix is diagonalizable, diagonalize it.

Solution. (a)

(5) Show that if an operator $T: V \to V$ is not invertible, then 0 is an eigenvalue of T.

Solution. Any nonzero $v \in \operatorname{null}(T)$ is an eigenvector with eigenvalue 0.

(6) Let V be a finite-dimensional vector space over \mathbb{C} and let $T \in \mathcal{L}(V)$. Assume that, with respect to some basis (v_1, v_2, v_3, v_4) of V, we have:

$$\mathcal{M}(T) = \begin{pmatrix} 2+i & 3 & -1 & 4\\ 0 & 1 & 5 & -6\\ 0 & 0 & 2+i & 2\\ 0 & 0 & 0 & -3 \end{pmatrix}$$

- (a) Find the eigenvalues of T.
- (b) Determine if T is invertible.
- (c) Explain why, for each $k \in \{1, 2, 3, 4\}$, we have:

$$T(\operatorname{span}(v_1,\ldots,v_k)) \subseteq \operatorname{span}(v_1,\ldots,v_k).$$

Solution. (a) They are the four entries in the diagonal of T.

- (b) If T was invertible, then 0 would be an eigenvalue (see question 5). But 0 is not an eigenvalue, so T is invertible.
- (7) (a) Give an example of a finite-dimensional complex vector space and an operator T on that vector space such that T^2 is diagonalizable but T is not diagonalizable.
 - (b) Suppose $\mathbb{F} = \mathbb{C}$, k is a positive integer, and $T \in \mathcal{L}(V)$ is invertible. Prove that T is diagonalizable if and only if T^k is diagonalizable.
 - (a) The $T : \mathbb{C}^2 \to \mathbb{C}^2$ defined by T(z, w) = (w, 0). Note that $T^2 = 0$, and the zero matrix is diagonal.
 - (b) This follows from (3b) and the fact that "diagonalizable" means "having a basis of eigenvectors".
- (8) Define $T \in \mathcal{L}(P_4(\mathbb{R}))$ by (Tp)(x) = xp'(x) for all $x \in \mathbb{R}$. Find all eigenvalues and eigenvectors of T.

Solution. Let $p(x) = a + bx + cx^2 + dx^4$. Then

$$(Tp)(x) = x \cdot (b + 2cx + 4dx^3) = bx + 2cx^2 + 4dx^3$$

The eigenvalue equation $Tp = \lambda p$ becomes

$$bx + 2cx^{2} + 4dx^{3} = \lambda a + \lambda bx + \lambda cx^{2} + \lambda dx^{4}.$$

If $\lambda = 0$, then a is a free variable. Hence p(x) = a is an eigenvector with eigenvalue 0.

If $\lambda \neq 0$, then comparing the coefficient of x we conclude that $\lambda = 1$. Hence b is a free variable. We also conclude that c = d = 0. Indeed, p(x) = b is an eigenvector with eigenvalue 1.

These are all eigenvectors.

(9) Suppose $T \in \mathcal{L}(V)$ and u, w are eigenvectors of T such that u + w is also an eigenvector of T. Prove that u and w are eigenvectors of T corresponding to the same eigenvalue.

Solution. Let α , β , and γ be the eigenvalues of u, v, and u + v, respectively. If $\alpha = \beta$, then u + v is already an eigenvector:

$$T(u+v) = Tu + Tv = \alpha u + \alpha v = \alpha \cdot (u+v).$$

Otherwise $\alpha \neq \beta$, and in particular u and v are linearly independent. Then

 $T(u+v)=Tu+Tv\implies \gamma u+\gamma v=\alpha u+\beta v\implies (\alpha-\gamma)u+(\beta-\gamma)v=0.$

Hence $\alpha - \gamma = 0$ and $\beta - \gamma = 0$ by linearly independence, so $\alpha = \gamma = \beta$. Contradiction.

(10) Suppose $T \in \mathcal{L}(V)$ is such that every nonzero vector in V is an eigenvector of T. Prove that T is a scalar multiple of the identity

Solution. Every vector in a basis e_1, \ldots, e_n of V is linearly independent and an eigenvector, so they must correspond to the same eigenvalue λ . Hence for $v = a_1e_1 + \cdots + a_ne_n$ we see that

$$Tv = a_1Te_1 + \dots + a_nTe_n = a_1\lambda e_1 + \dots + a_n\lambda e_n = \lambda(a_1e_1 + \dots + a_ne_n) = \lambda v.$$

So $T = \lambda \cdot I.$