
Solutions to Problem Set 6
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Winter 2025

In this problem set, any vector space V comes equipped with an inner product.

(1) Choose one of the inner products defined in Example 6.3 of the book. Check that
they are indeed inner products, i.e. show that the axioms are satisfied.

(2) Let e1, . . . , en be an orthonormal basis, and v = a1e1 + · · · + anvn. Show that
ai = ⟨v, ei⟩.

Solution. Since the basis is orthonormal,

⟨ei, ej⟩ =

{
0 if i ̸= j

1 if i = j
.

Then

⟨v, ei⟩ = ⟨a1e1 + · · ·+ anvn, ei⟩
= ⟨a1e1, ei⟩+ · · ·+ ⟨anen, ei⟩ linearity
= a1⟨e1, ei⟩+ · · ·+ an⟨en, ei⟩ linearity
= ai⟨ei, ei⟩ all other terms are zero
= ai ⟨ei, ei⟩ = 1

■

(3) x Suppose that u, v ∈ V and ∥u∥ = ∥v∥ = 1 and ⟨u, v⟩ = 1. Prove that u = v.

(4) Recall that in R3 it’s true that

u⃗ · v⃗ = ∥u⃗∥∥v⃗∥ cosα,

where α is the angle between the vectors. There is no “angle” between vectors in
a general vector space V , but in the presence of an inner product we can use this
formula to define the angle between two vectors:

cos(u, v) = arccos

(
⟨u, v⟩
∥u∥∥v∥

)
.

(a) Show that this formula is well-defined. (What is the domain of arccos?)
(b) Using the inner product ⟨f, g⟩ =

∫ 1
0 f(x)g(x)dx on C0([0, 1]), calculate the

angle between x, ex, and sinx.

Solution. (a) The domain of arccos is [0, 1], and because of Cauchy-Shwarz:

⟨u, v⟩ ≤ ∥u∥ · ∥v∥ =⇒ ⟨u, v⟩
∥u∥ · ∥v∥

≤ 1,

so the formula is well-defined.



(b) For instance:

∥ex∥ =
√

⟨ex, ex =

√∫ 1

0
e2xdx =

√
1

2
(e2 − 1)

∥1∥ =
√
⟨1, 1, ⟩ =

√∫ 1

0
1dx = 1

⟨ex, 1⟩ =
∫ 1

0
ex · 1dx = e− 1.

So

cos(ex, 1) = arccos

(
⟨ex, 1⟩
∥ex∥∥1∥

)
= arccos

(
e− 1√

(e2 − 1)/2

)
≈ 0.28 rad ≈ 16◦.

■

(5) Let B = e1, . . . , en be a basis1 for V , and define the matrix A whose entries are
aij = ⟨ei, ej⟩. Show that, for u, v ∈ V ,

⟨u, v⟩ = [u]⊺B ·A · [v]B,

where [v]B denotes the vector with the conjugate of coordinates of v as its entries.

Solution. Recall that [v]B =

c1...
cn

 corresponds to the expansion of v in the basis,

i.e. v = c1e1 + · · ·+ cnen. Similarly, let [u]B

b1...
bn


We can calculate

⟨u, v⟩ = ⟨b1e1 + · · ·+ bnen, c1e1 + · · ·+ cnen⟩

=
n∑

i=1

n∑
j=1

bicj⟨ei, ej⟩ applying linearity on both entries

=
n∑

i=1

n∑
j=1

biaijcj definition of aij

= [u]⊺A[v]B matrix multiplication

■

(6) In R3 with the usual dot product, find an orthonormal basis for

U = span

12
3

 ,

26
0

 .

1The original statement was wrong - this question is trivial on an orthonormal basis.
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Solution. Let v1 =

12
3

 and v2 =

26
0

. Recall the orthornormalization procedure:

u1 = v1, e1 =
u1
∥u1∥

u2 = v2 −
⟨v2, u1⟩
⟨u1, u1⟩

, e2 =
u2
∥u2∥

Note that ⟨v1, v1⟩ = ⟨v1, v2⟩ = 14, so e1 =
u1

∥u1∥
=

1/
√
14

2/
√
14

3/
√
14

. Then

u2 = v2 −
⟨v2, u1⟩
⟨u1, u1⟩

=

26
0

− 14

14
·

12
3

 =

 1
4
−3

 .

Normalizing:

e2 =
u2

∥u2∥
=

 1/
√
26

4/
√
26

−3/
√
26

 .

So an orthonormal basis is


1/

√
14

2/
√
14

3/
√
14

 ,

 1/
√
26

4/
√
26

−3/
√
26

. ■

(7) Consider the inner product space C([0, 2]) with the inner product given by

⟨f, g⟩ =
∫ 2

0
f(x)g(x)dx.

Use Gram-Schmidt to find an orthogonal basis for span(1, x, x2).2

Solution. Let v1 = 1, v2 = x, and v3 = x2. Recall the orthonormalization proce-
dure:

u1 = v1, e1 =
u1

∥u1∥

u2 = v2 −
⟨v2, u1⟩
⟨u1, u1⟩

u1, e2 =
u2

∥u2∥

u3 = v3 −
⟨v3, u1⟩
⟨u1, u1⟩

u1 −
⟨v3, u2⟩
⟨u2, u2⟩

u2, e3 =
u3

∥u3∥
Then this question is like the previous one, done step by step, just make sure you
calculate the inner products using the definition above. ■

(8) In C3 with the complex dot product, find an orthonormal basis for

U = span

0i
2

 ,

 1
i+ 1
3i+ 2

 .

Solution. This will be like question 6, but you have to use the complex inner
product. ■

2There was a typo in the original question.
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