Problem Set 7

Matrix Theory & Linear Algebra II

Winter 2025

In this problem set, any vector space V comes equipped with an inner product. The field \mathbb{F} is either \mathbb{C} or \mathbb{R} , unless specified. Ensure you do at least the first page of this document.

- (1) True or false:
 - (a) Every unitary operator $U: X \to X$ is normal.
 - (b) A matrix is unitary if and only if it is invertible.
 - (c) If two matrices are unitarily equivalent, then they are also similar.
 - (d) The sum of self-adjoint operators is self-adjoint.
 - (e) The adjoint of a unitary operator is unitary.
 - (f) The adjoint of a normal operator is normal.
 - (g) If all eigenvalues of a linear operator are 1, then the operator must be unitary or orthogonal.
 - (h) If all eigenvalues of a normal operator are 1, then the operator is identity.
 - (i) A linear operator may preserve norm but not the inner product.
- (2) Four of the following matrices are diagonalizable. Which ones and why?

(a)	(d)	
		$\begin{bmatrix} 0.5 & -2 & 3 & 1 \end{bmatrix}$
$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$		$\begin{bmatrix} -1 & 4.2 & 0 & 3.5 \end{bmatrix}$
(b)		2 -0.5 1.3 2.2
		$\begin{bmatrix} 0.5 & -2 & 3 & 1 \\ -1 & 4.2 & 0 & 3.5 \\ 2 & -0.5 & 1.3 & 2.2 \\ 4 & -3 & 2 & -1 \end{bmatrix}$
$\begin{vmatrix} -i & 3 & 4 \end{vmatrix}$	(a)	
$\begin{bmatrix} 2 & i & 0 \\ -i & 3 & 4 \\ 0 & 4 & -1 \end{bmatrix}$	(e)	[2 1 0 <u>-</u> 1 3]
(c)		$\begin{bmatrix} 2 & 1 & 0 & 1 & 0 \\ 1 & 4 & 2 & 0 & -2 \end{bmatrix}$
$\begin{bmatrix} 1+i & 2 & -i \end{bmatrix}$		$\begin{bmatrix} 0 & 2 & 5 & 1 & 4 \end{bmatrix}$
0 3-i 4		$\begin{vmatrix} -1 & 0 & 1 & 3 & 2 \end{vmatrix}$
$\begin{bmatrix} 1+i & 2 & -i \\ 0 & 3-i & 4 \\ 0 & 0 & 5+2i \end{bmatrix}$		$\begin{bmatrix} 2 & 1 & 0 & -1 & 3 \\ 1 & 4 & 2 & 0 & -2 \\ 0 & 2 & 5 & 1 & 4 \\ -1 & 0 & 1 & 3 & 2 \\ 3 & -2 & 4 & 2 & 6 \end{bmatrix}$

(3) Check that the following real matrices are orthogonal and/or self-adjoint, and orthogonally diagonalize them. In other words, find orthonormal bases of eigenvectors in each case.

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad B = \frac{1}{2} \begin{bmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix}, \quad C = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

In each case give a geometric interpretation of the transformation.

- (4) Prove the following properties of adjoint operators. You can do this from the definition, or by checking properties on a basis.
 - (a) $(S+T)* = S^* + T^*$.
 - (b) $(\lambda \cdot T)^* = \overline{\lambda} \cdot T^*$.
 - (c) $(T^*)^* = T$
 - (d) $(ST)^* = T^*S^*$
 - (e) if *T* is invertible, then $(T^{-1})^* = (T^*)^{-1}$
 - (f) if λ is an eigenvalue of T, then $\overline{\lambda}$ is an eigenvalue of T^* .
- (5) Show that ker $T = (\operatorname{range} T^*)^{\perp}$.
- (6) Let $T: V \to V$ be a self-adjoint operator. Show that if $\lambda_1 \neq \lambda_2$ are distinct eigenvalues, then the corresponding eigenvectors are orthogonal. Use this and the Spectral Theorem to conclude that a self-adjoint operator has an orthonormal basis of eigenvectors.
- (7) An operator $T: V \to W$ is an *isometry* if $\langle Tv, Tw \rangle = \langle v, w \rangle$ for all $v, w \in V$. Show that if dim $V = \dim W$ then any isometry is invertible.
- (8) An invertible operator $T: V \to V$ is unitary if it is an isometry (in particular, T is invertible). Show that an operator is unitary if and only if $TT^* = T^*T = I$ (i.e. $U^{-1} = U^*$).
- (9) Using the previous exercise, explain the following assertion: "Unitary and orthogonal operators are the operators that preserve angles and distances."
- (10) Let U be a 2×2 orthogonal matrix with det U = 1. Prove that U is a rotation matrix.
- (11) Let U be a 3×3 orthogonal matrix with det U = 1. Prove that
 - (a) 1 is an eigenvalue of U.
 - (b) If $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is an orthonormal basis, such that $U\mathbf{v}_1 = \mathbf{v}_1$ (remember, that 1 is an eigenvalue), then in this basis the matrix of U is

$$\begin{pmatrix} 1 & 0 & 0\\ 0 & \cos \alpha & -\sin \alpha\\ 0 & \sin \alpha & \cos \alpha \end{pmatrix},$$

where α is some angle.

- (12) Let A be an $m \times n$ matrix. Show that
 - (a) A^*A is self-adjoint.
 - (b) The eigenvalues of A^*A are non-negative.
 - (c) $A^*A + I$ is invertible.
- (13) Prove that a normal operator with whose eigenvalues satisfy $\|\lambda_k\| = 1$ is unitary. Hint: diagonalize.
- (14) For $\mathbb{F} = \mathbb{R}$, show that self-adjoint operators form a subspace of $\mathcal{L}(V)$.(*Hint:* this was in your 2nd WebWork homework.) Show that this is false for $\mathbb{F} = \mathbb{C}$.