Categorical spectra, cohomology theories, and k-invariants

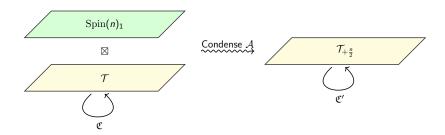
Gong show at: Summer School on Higher Structures @ Universität Hamburg

Daniel Teixeira

Dalhousie University

August 2025

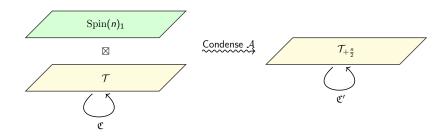
In [TY25] we study the following operation:



Symmetries of $\mathcal{T} \in \mathsf{a}$ certain class of fusion 2-category $\mathfrak C$

∼→ classified by a cohomology theory built categorically (supercohomology) [GW14]

In [TY25] we study the following operation:



Symmetries of $\mathcal{T} \in \mathsf{a}$ certain class of fusion 2-category $\mathfrak C$

∼→ classified by a cohomology theory built categorically (supercohomology) [GW14]

Today: general story behind such cohomology theories.

Definition

A categorical spectrum is a sequence of (∞, ω) -categories (*)

$$\mathfrak{C}^0,\mathfrak{C}^1,\mathfrak{C}^2,\dots$$

with equivalences $\mathfrak{C}^n\cong\Omega\mathfrak{C}^{n+1}$. [Ker24, Mas, Ste]

(*) See [LH23, Lou24, SP] & Martina's talk next week.

Example

Delooping a symmetric monoidal category \mathcal{C}^{\otimes} gives a categorical spectrum

$$C, BC, B^2C, \dots$$

A spectrum is called *connective* if it arises like this.

Underlying a categorical spectrum ${\mathfrak C}$ is an ordinary Ω -spectrum ${\mathfrak C}^{\times}$

Program

- 1. How can we understand cohomology theories arising from categorical spectra?
- 2. Which Ω -spectra underlie "intesting" categorical spectra?

In [Reu21] some results related to (2) & Kitaev's conjecture by Johnson-Freyd-Reutter are announced.

Example: reduced supercohomology

Reduced cohomology is a spectrum with $\pi_{-1}=\mathbb{Z}/2$ and $\pi_0=\mathbb{C}^{\times}$ which appears in physics [GW14, GJF19].

The spectrum can be obtained by considering super vector spaces,

sVect, BsVect, B^2sVect , . . .

Example: reduced supercohomology

Reduced cohomology is a spectrum with $\pi_{-1}=\mathbb{Z}/2$ and $\pi_0=\mathbb{C}^{\times}$ which appears in physics [GW14, GJF19].

The spectrum can be obtained by considering super vector spaces,

$$sVect$$
, $BsVect$, B^2sVect , . . .

shifting the spectrum to the right,

$$\mathbb{C}$$
, sVect, B sVect, . . .

Example: reduced supercohomology

Reduced cohomology is a spectrum with $\pi_{-1}=\mathbb{Z}/2$ and $\pi_0=\mathbb{C}^{\times}$ which appears in physics [GW14, GJF19].

The spectrum can be obtained by considering super vector spaces,

$$sVect$$
, $BsVect$, B^2sVect , . . .

shifting the spectrum to the right,

$$\mathbb{C}$$
, sVect, B sVect, . . .

and taking Picard groupoids:

$$r\mathrm{SH}^{ullet} = (\mathbb{C}^{\times}, \mathsf{sVect}^{\times}, B\mathsf{sVect}^{\times}, \dots)$$

The cocycles in rSH^{\bullet} are given by

$$r\mathrm{SH}^n(X,\mathfrak{C})\cong egin{cases} lpha\in Z^{n-1}(X,\pi_0)\ eta\in C^n(X,\pi_1) \text{ s.t. } deta=(-1)^{\mathrm{Sq}^2}lpha \end{cases}.$$

The operation $(-1)^{\operatorname{Sq}^2}: H\mathbb{Z}/2 \to \Sigma^2 H\mathbb{C}^{\times}$ appears here because it is the k-invariant of \mathbf{sVect}^{\times} .

$$\Sigma H\mathbb{C}^{ imes} \longleftrightarrow \mathbf{sVect}^{ imes}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad H\mathbb{Z}/2 \xrightarrow{(-1)^{\operatorname{Sq}^2}} \Sigma^2 H\mathbb{C}^{ imes}$$

Example: supercohomology

Supercohomology is a shift of the Picard groupoid **2sVect** to concentrate its homotopy groups in negative degrees

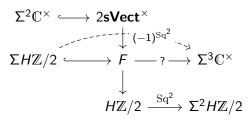
$$\mathrm{SH}^{\bullet} = (\mathbb{C}^{\times}, \mathsf{sVect}^{\times}, 2\mathsf{sVect}^{\times}, B2\mathsf{sVect}^{\times}, \dots)$$

[JFR23] (also see David's course this week)

Fermionic strongly fusion 2-categories are classified by a group G_b , a class $\kappa \in \mathrm{H}^2(BG_b, \mathbb{Z}/2)$, and a cocycle in $\mathrm{SH}^{4+\kappa}(BG_b)$, a version of supercohomology twisted by κ .

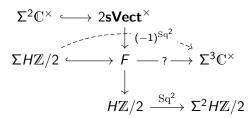
The cocycles in SH[•] are given by

$$\mathrm{SH}^n(X,\mathfrak{C}) \cong \begin{cases} \alpha \in Z^n(X,\pi_0) \\ \beta \in C^{n+1}(X,\pi_1) \text{ s.t. } d\beta = \mathrm{Sq}^2 \alpha \\ \gamma \in C^{n+2}(X,\pi_2) \text{ s.t. } d\gamma = (-1)^{\mathrm{Sq}^2 \beta} + f(\alpha) \end{cases}$$



The cocycles in SH[•] are given by

$$\mathrm{SH}^n(X,\mathfrak{C})\cong egin{cases} lpha\in Z^n(X,\pi_0)\ eta\in C^{n+1}(X,\pi_1) ext{ s.t. } deta=\mathrm{Sq}^2lpha\ \gamma\in C^{n+2}(X,\pi_2) ext{ s.t. } d\gamma=(-1)^{\mathrm{Sq}^2eta}+f(lpha) \end{cases}$$

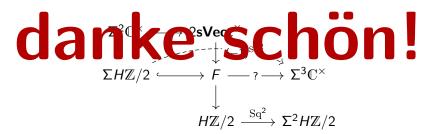


Question

What is the precise relation between such cocycles descriptions & the Postnikov towers of these groupoids?

The cocycles in SH[•] are given by

$$\mathrm{SH}^n(X,\mathfrak{C})\cong egin{cases} lpha\in Z^n(X,\pi_0)\ eta\in C^{n+1}(X,\pi_1) ext{ s.t. } deta=\mathrm{Sq}^2lpha\ \gamma\in C^{n+2}(X,\pi_2) ext{ s.t. } d\gamma=(-1)^{\mathrm{Sq}^2eta}+f(lpha) \end{cases}$$



Question

What is the precise relation between such cocycles descriptions & the Postnikov towers of these groupoids?

References I

- [Arn] Bertram Arnold, *Maps into a Postnikov tower of the sphere*. URL:https://mathoverflow.net/q/322250 (version: 2019-02-01).
- [DHJF⁺24] Thibault D. Décoppet, Peter Huston, Theo Johnson-Freyd, Dmitri Nikshych, David Penneys, Julia Plavnik, David Reutter, and Matthew Yu, The classification of fusion 2-categories, arXiv, 2024.
 - [GJF19] Davide Gaiotto and Theo Johnson-Freyd, Symmetry protected topological phases and generalized cohomology, Journal of High Energy Physics 2019 (May 2019), no. 5.
 - [GW14] Zheng-Cheng Gu and Xiao-Gang Wen, Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ -models and a special group supercohomology theory, Physical Review B **90** (September 2014), no. 11.
 - [JFR23] Theo Johnson-Freyd and David Reutter, Minimal nondegenerate extensions, Journal of the American Mathematical Society 37 (July 2023), no. 1, 81–150.
 - [Ker24] David Kern, Categorical spectra as pointed (∞, \mathbb{Z}) -categories, arXiv, 2024.

References II

- [LH23] Félix Loubaton and Simon Henry, An inductive model structure for strict ∞-categories, arXiv, 2023.
- [Lou24] Félix Loubaton, Categorical theory of (∞, ω) -categories, arXiv, 2024.
 - [Mas] Naruki Masuda, *The algebra of categorical spectra*, Ph.D. Thesis, Johns Hopkins University.
- [Reu21] David Reutter, On the categorical spectrum of topological quantum field theories, 2021. URL: https://youtu.be/7jdyjLjp3BA.
 - [SP] Chris Schommer-Pries, Is there an accepted definition of (∞, ∞) category? URL:https://mathoverflow.net/q/134099 (version: 2017-12-15).
 - [Ste] German Stefanich, *Higher quasicoherent sheaves*, Ph.D. Thesis, UC Berkley.
- [TY25] D. T. and Matthew Yu, Mutual influence of symmetries and topological field theories (2025), available at 2507.06304.