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This is an exposition on the symmetric bicategory MorR of algebras, bimodules and bi-
module homomorphisms, where R is commutative.

When R = Z this is the more common bicategory of rings, bimodules over them and
bimodule homomorphisms.

1 Bicategories

We recall the definition of a bicategory and sketch that of a symmetric monoidal bicategory.

Definition 1. A bicategory B consists of

• a collection of objects ob(B);

• for each x, y ∈ ob(B), a hom-category B(x, y);

• for each x, y, z ∈ ob(B), a composition functor

⋆ : B(y, z)×B(x, y) → B(x, z);

• for each x ∈ B(x, y), an identity functor 1x : {∗} → B(x, x).

Associativity and unitality aren’t held on the nose. Instead there are the following natural
isomorphisms:

• Associators:

B(z, w)⊗R B(y, z)⊗R B(x, y) B(z, w)⊗R B(x, z)

B(y, w)⊗R B(x, y) B(x, w)

⋆⊗Rid ⋆

id⊗R⋆

⋆

α

• Unitors:

B(x, y)⊗R {∗} B(x, y)⊗R B(y, y)

B(x, y)

⋆

id⊗R1y

∼=
λ and

B(x, x)⊗R B(x, y) {∗} ⊗R B(x, y)

B(x, y)

1x⊗Rid

⋆
∼=

ρ

Furthermore the associators and unitors are assumed to be coherent. This is equivalent
to assume the pentagon and triangle identities hold pointwise.

The word “bicategory” usually invokes the picture of a globular 2-cell x y

f

g

η .

Here the morphisms and 2-cells here are respectively the objects and morphisms of B(x, y).
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Ne can vertically compose 2-cells by using the composition of B(x, y):

x y 7→ x y

f

h

g

f

h

η

ε

ε◦η

Mertical composition is associative because it’s the composition of the ordinary category

B(x, y). So any order for the vertical composite of • •... results in the same 2-cell.

The composition functor ⋆ yields a horizontal composition:

x y z 7→ x z

f g

f ′ g′

g⋆ f

g′⋆ f ′

ε⋆ηη ε

The difference between bicategories and strict 2-categories is here: the composite of a

sequence of 2-cells x0 x1 xn−1 xn... no longer results in a unique 2-cell in

B(x0, xn), but instead the different possibilities can be uniquely compared via the associators.

Example 2. The delooping of a monoidal category (M,⊗, I, α, λ, ρ) is the bicategory BM
defined by

• a single object •;

• M as the unique hom-category BM(•, •);

• ⊗ : M×M → M as the composition;

• I : {∗} → M as the identity;

• α, λ and ρ as the associators and unitors.

This isn’t a strict 2-category unless M is a strict monoidal category (because (x ⊗ y)⊗ z ̸=
x ⊗ (y ⊗ z)). Additionally, note that this construction identifies monoidal categories as the
special case of bicategories with a single object, for then we may extract a monoidal category
from the unique hom-category.

Example 3. There is a bicategory MorZ of rings, bimodules and bimodule homomorphisms.
The vertical composition is just the composition of bimodule homomorphisms, and the hori-
zontal composition is given by tensoring over the middle ring:

R S TM N 7→ R T
M⊗S N

.

This the prototype for MorR.

Definition 4. An adjunction between two morphisms f : x → y and g : y → x in a bicategory
B is a pair of 2-cells

y

x x

f g
η

and
y y

x
fg

ε .

such that the triangle identities hold:

y y

x x

g
f

f
η

ε =

y y

x x

f

f
1 f
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and

y y

x x

f
g

g η
ε =

y y

x x

g
g

1g .

Example 5. An object x in a monoidal category M is dualizable precisely if it has an adjoint
when regarded as a morphism in BM. A left adjoint is a left dual.

Definition 6. An equivalence between two objects x and y in a bicategory B is a pair of
morphisms f : x → y and g : y → x and 2-isomorphisms η : 1x ∼= g f and ε : f g ∼= 1y.

Example 7. Two rings R and S are equivalent in MorZ if there is an (R, S)-bimodule M and a
(S, R)-bimodule N such that

N ⊗S M ∼= S and M ⊗R N ∼= R. (1)

A theorem in Morita theory implies that this condition is precisely equivalent to requiring
R and S to be Morita equivalent, i.e. possessing equivalent categories of left-modules. See the
first page of [Mey] for a brief discussion about this.1

Symmetric bicategories

A monoidal bicategory is a one-object tricategory [GPS95, Definition 2.6.(ii)]. Another
way of putting this is that a monoidal bicategory consists of a bicategory B equipped
with a pair of pseudofunctors

⊗ : B × B → B and I : {∗} → B

plus additional coherence data. A braided monoidal category additionally posseses
equivalences

bxy : x ⊗ y → y ⊗ x

and further coherence data. Symmetric bicategories have an extra modification and
another coherence axiom.
Alas, we won’t delve into the details as they are famously messy and long. Instead we
refer the reader to the appendix of [SP11] for details and some nice pictures.
Another interesting point of view if found in [Shu10], where the strategy is to obtain
symmetric bicategories from symmetric double categories, and the axioms for these are
simpler. The main symmetric bicategory of this text can be constructed in this way.

2 Bimodules and their homomorphisms

In this section we define bimodules and bimodule homomorphisms over R-algebras, which
we assume to be associative and unital i.e. monoid objects in ModR.

Definition 8. Let (A, µ, IA) be an R-algebra. A left A-module is an R-module (M, ρ) equipped
with a linear map

m : A ⊗R M → M

which is unital and associative with respect to the multiplication in A:

A ⊗R A ⊗R M A ⊗R M

A ⊗R M M

µ⊗RidM

idA⊗Rρ

ρ

µ

R ⊗ M A ⊗R M

M

IA⊗RidM

m
m

1The first theorem in that paper implies that a Morita equivalence between T : ModR ∼= ModS is given by
T ∼= N ⊗S (−), where N is a (S, R)-bimodule. In particular there must be an (R, S)-bimodule N such that

N ⊗S ⊗M ⊗R (−) ∼= idMorR and M ⊗N ⊗P ⊗S (−) ∼= idMorS .

If we are given M and N such that Equation 1 holds, then it’s immediate that they will form an equivalence such as
this one. Conversely, given such an equivalence we recover Equation 1 by plugging in the identities for R and S.
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Right modules are defined similarly.

Remark 9. Actually, right modules are defined dually. To see that, define the opposite algebra
Aop to be A equipped with the same identity and multiplication given by

a ·op b := b · a.

(This makes sense in any symmetric monoidal category.)
In particular note that if A is commutative then it coincides with Aop and the notions of

left and right module coincide.

Definition 10. An (A,B)-bimodule is an R-module M equipped which is

• a left A-module ρA : A ⊗R M → M

• a right B-module ρB : M ⊗ B → M

and such that

A ⊗R M ⊗R B A ⊗R M

M ⊗R B M

ρA⊗idB

idA⊗ρB

ρA

ρB

.

In this case we write M : A ↛ B.

Definition 11. A left module homomorphism between a pair of left A-modules M, N is a
linear map f : M → N such that

A ⊗R M M

A ⊗R M N

m

idA⊗ f f

n

.

Right module homomorphisms are defined dually, and a bimodule homomorphism consists
of a pair of left and right homomorphisms.

The composition of bimodule homomorphisms is associative and the identity of M : A ↛ B
is idM. So there is a category MorR(A, B).

3 The bicategory of bimodules

The main piece remaining for MorR is the horizontal composition. We will construct this by
the balanced tensor product

⊠B : MorR(A, B)× MorR(B, C) → MorR(A, C).

We first set up the balanced tensor product of bimodules, which takes N : B ↛ C and
M : A ↛ B and yields an bimodule M ⊠B N : A ↛ C. The construction is akin to the tensor
product of vector spaces.
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The tensor product of vector spaces

Given two K-vector spaces V and W, their tensor product is defined as a K-vector
space V ⊗K W such that bilinear maps V ⊗R W → U correspond uniquely to linear
maps V ⊗K W → U:

V ⊗R W V ⊗K W

U
∀ f

⊗

∃! f̃ .

In other words, consider the functor

Bilin(V, W;−) : VectK → Set

taking a vector space to the set of all bilinear maps V ⊗R N → U The tensor product is
a representative to this functor:

Bilin(V, W;−) ∼= VectK(V ⊗K W;−).

Definition 12. Let M and N be respectively right and left B-modules. A B-balanced map is
an R-bilinear map f : M ⊗R N → U, where U is an R-module, such that

f (m ⊗ b, n) = f (m, b ⊗ n)

for all m in M, n in N and a in A.

Example 13. If R is a field then a balanced map is a bilinear map.

Given M and N such as above, notice that there is a functor

Bal(M, N;−) : ModR → Set

taking an R-module U to the set of R-balanced maps M ⊗R N → U.

Definition 14. The balanced tensor product M ⊠A N between a right A-module M and a left
A-module N is a representative for Bal(M, N;−).

In terms of a universal property:

M ⊗R N M ⊠A N

U
∀ f

⊠

∃! f̃ .

Remark 15. By the Yoneda embedding the balanced tensor product is defined up to isomor-
phism - if it exists. This is the case: an explicit construction is obtained by taking the quotient
of M ⊗R N by the relations

(m · a)⊗R b ∼ m ⊗R (an)

for all a in A.

Proposition 16. Let M be a right A-module and N and P be left A-modules, and suppose there is a
left-module homomorphism f : N → P. Then there is a canonical morphism

idM ⊠A f : M ⊠A N → M ⊠A P.

A similar statement holds for right modules.

Proof. This is induced by the diagram

M ⊗R N M ⊗R P

M ⊠A N M ⊠A P

⊠

idM⊗R f

⊠

idM⊗ f
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where ⊠ ◦ (idM ⊗R f ) is A-balanced by construction:

⊠ ◦ (idM ⊗R f )(mb ⊗ n) = ⊠(mb ⊗R f (n))
= ⊠(m ⊗R b f (n))
= ⊠(m ⊗R f (bn))
= ⊠ ◦ (idM ⊗R f )(m ⊗ bn)

Corollary 17. Given an A-module M defines a functor, the construction above defines a functor

M ⊠A (−) : AMod → ModR.

In other words, given right A-module homomorphisms N → P and P → Q we have

(idM ⊗ g) ◦ (idM ⊗ f ) = idM ⊗ (g ◦ f ) and idM ⊗ idN = idM⊠A N .

Proof. Preservation of composition follows from the diagram below because of the uniqueness
of the induced maps.

M ⊗R N M ⊗R P M ⊗R Q

M ⊠A N M ⊠A P M ⊠B Q

⊗
idM⊗R f

idM⊗R(g◦ f )

⊗
idM⊗Rg

idM⊗ f

idM⊗(g◦ f )

idM⊗g

Preservation of identities is similar.

Corollary 18. Let M and N be respectively right and left B-module. Then

• if M is a left A-module, then M ⊠B N is an A-left module;

• if N is a right C-module then M ⊠B N is an C-right module.

Proof. We prove the second statement: for any c ∈ C let µc : N → N be the automorphism
given by µc(n) = n · c. Then the right C-module structure on M ⊠B N is obtained by defining
the action of c ∈ C to be idM ⊗ µc. Compatibility with scalars follows from functoriality and
the definition of bimodule.

The other case is analogous.

Corollary 19. The balanced tensor product of M : A ↛ B and N : B ↛ C is a bimodule

M ⊠B N : A ↛ C.

Proposition 20. Given bimodules M :↛ B, N : B ↛ C and P : C ↛ D, there is a unique
isomorphism of (A, D)-modules

(M ⊠A N)⊠B P ∼= M ⊠A (N ⊠B P)

Proof. The isomorphism in all instances is obtained by unravelling the universal properties
involved and the definition in Corollary 18.

Proposition 21. The balanced tensor product is unital with identity given by the algebra itself, i.e. if
M is a left A-module then

A ⊠A M ∼= M

where A is regarded a right A-module over itself. A similar statement hold for right-modules.
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Proof. This only happens because A is unital, which allows us to find a section to the multi-
plication ρ : M ⊗R A → M by

s : M ∼= M ⊗R R
idM⊗1A−−−−→ M ⊗R A.

Then the result follows from the universal property.

Definition 22. Consider the following situation:

A B C

Mp Np

M′p N′p
gf .

In this case, the tensor product of f and g

g ⊠B f : M ⊠B N → M′ ⊠B N′

is the map induced by functoriality (see Corollary 17). It is a homomorphism by definition.

Definition 23. For any ring R, let MorR be the bicategory whose

• objects are R-algebras;

• hom-categories are the categories MorR(A, B) defined in Section 2;

• composition functors

⋆ : MorR(A, B)⊗R MorR(B, C) → MorR(A, C)

are given by the balanced tensor product of right and left B-modules;

• identities are given by A seen as an (A, A)-bimodule with idA as the identity 2-cell.

The associators and unitors are given by the unique isomorphisms described above.

The monoidal structure of ModR

The tensor product of bimodules M : A ↛ B and M′ : A′ ↛ B′ can be defined simply
as their R-tensor product. For instance, a left (A ⊗R A′)-module structure is induced
on M ⊗R M′ because

(A ⊗R A′)⊗R M ⊗R M′ ∼= (A ⊗R M)⊗R (A′ ⊗R M′),

and from here we can just take the tensor product of the scalar multiplications. This
construction extends similarly to bimodule homomorphisms.
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