
MATH 2112/CSCI 2112, Discrete Structures I
Winter 2007
Toby Kenney

Homework Sheet 8
Model Solutions

Compulsory questions

1 (a) Consider the following algorithm for finding the nth fibonacci number:

Input: natural number n
Output: nth Fibonacci number

if n=0 then
return 0

end if
if n=1 then

return 1
end if
Find the n− 1th Fibonacci number {using this algorithm}
Find the n− 2th Fibonacci number {using this algorithm}
Add them together and
return the result.

Find a recurrence relation for the number of additions required to calculate
the nth fibonacci number using this algorithm and solve it.

Let the number of additions required to calculate Fn be an, then an =
an−1 + an−2 + 1, while a0 = 0, a1 = 0. This gives the following first few
values:
n an

2 1
3 2
4 4
5 7
6 12

This leads us to guess that an = Fn+1−1. We now prove this by induction.
We have already checked the base cases. Suppose it holds for n − 2 and
n − 1; we want to prove it holds for n. By our inductive hypothesis,
an−2 = Fn−1 − 1, an−1 = Fn − 1, so by our recurrence relation, an =
an−1 + an−2 + 1 = Fn−1 − 1 + Fn − 1 + 1 = Fn−1 + Fn − 1 = Fn+1 − 1, as
required, so by induction, the formula works for all n.

(b) Now consider the following algorithm to find both Fn and Fn+1:

1

Input: natural number n
Output: nth Fibonacci number

if n=0 then
return 0 and 1

end if
Find Fn−1 and Fn, the n − 1th and nth fibonacci numbers {using this algo-
rithm}
return Fn and Fn−1 + Fn.

How many additions does this algorithm need to calculate Fn and Fn+1?

Let an be the number of additions that this algorithm needs to calculate
Fn and Fn+1. an satisfies the recurrence relation an+1 = an + 1, and the
base case is a0 = 0, so we get an = n, i.e the algorithm needs just n
additions to find Fn and Fn+1.

2 Which of the following functions are Θ(na) for some 0 < a < ∞. For
functions which are Θ(na) for some a, give the value of a. For function
which are not, are they O(na) for all a? are they Ω(na) for all a? Justify
your answers. You may use any of the results about O, Ω and Θ proved
in the lectures.

(a) f(n) = n7 − 3n3.6 + 4

f is Θ(n7). It was proved in lectures that for a1 6= 0, and b1 > b2 > . . . >
bk > 0, a1n

b1 + a2n
b2 + . . . + aknbk is Θ(nb

1): this is a special case of that
result.

(b) f(n) = e2n

f is Ω(na) for all a, since e2n = (e2)n, and as was shown in lectures, xn is
Ω(na) for any a.

(c) f(n) = 6

This is O(na) for any a > 0, since for any K, if n > (6K)
1
a , na > 6K, so

6 6 na

K .

(d) f(n) = (n + 3) log(n)

This is not Θ(na) for any a: n + 3 is O(n), while log(n) is O(na) for any
a > 0, so f is O(na) for any a > 1. On the other hand, f is not O(n),
since if n > eK , then f(n) > Kn, for any K, so we can’t choose a K and

2

an N such that (∀n > N)(f(n) 6 Kn). Therefore, f cannot be Θ(na) for
any a, since if a 6 1, f is not O(na), while if a > 1, then f is O

(
n

a+1
2

)
,

so if f were Ω(na), then n
a+1
2 would also be Ω(na), which it isn’t.

(e) f(n) = n3 + n(log(n))2

f is Θ(n3). Since log(n) is O(n0.5), n(log(n))2 is O(n2), so f is also
O(n3). On the other hand, for any K, we can choose N so that (∀n >
N)(|n3| > Kn(log(n))2). Therefore, |f | > (K − 1)n(log(n))2, so, we get
that n(log(n))2 is O(f). Thus, n3 is O(f), so f is Ω(n3), and therefore, f
is Θ(n3).

(f) f(n) =
√

n− log(n2 + 5)

f is Θ(n
1
2). log(n2 + 5) is O(log(2n2)), and log(2n2) = 2 log n + log 2,

which is O(logn), and therefore, O(na) for any a > 0. Thus, log(n2 + 5)
is O(n

1
2), and as in (e), it is O(f), so as in (e), f us Θ(n

1
2).

3 Consider the following algorithm for finding an element in a sorted list
a[1], a[2], . . . , a[n] of length n.

Input: x – item for which to search
Output: index at which x occurs in the list (or false if it doesn’t occur)

if n = 0 then
return false

else
Compare x to a[n/2] {rounding n/2 up to the nearest integer}
if x = a[n/2] then

return n/2
else if x < a[n/2] then

use this algorithm to find x in the list a[1], a[2], . . . , a[n/2− 1], and
return the result.

else if x > a[n/2] then
use this algorithm to find x in the list a[n/2+1], a[n/2+2], . . . , a[n], and
return the result plus n/2.

end if
end if

(a) How many comparisons does this algorithm take to find x:

(i) in the best case?

In the best case, x is the n/2th number in the list, so the algorithm makes
only 1 comparison.

3

(ii) in the worst case?

In the worst case, the algorithm never finds x, and at each stage searches
the longer sublist for x. If the list has length n, the longer sublist (or either
sublist if n is odd) has at most n

2 elements, and the algorithm makes one
comparison before searching the sublist. Therefore, the algorithm makes
k + 1 comparisons, where k is the smallest natural number such that
n < 2k. This is Θ(log n) comparisons.

(b) If the list is not sorted, the best search algorithm takes O(n) compar-
isons to find x on average. How many searches must a program perform
in order for it to be faster to sort the list with a merge-sort than to simply
use an unsorted list? (Give the order of magnitude, i.e. something like
“Ω(n3(log(n))2) searches”.) Justify your answer.

Recall that sorting the list takes Θ(n log n) operations, so sorting the
list then performing f(n) searches takes a total of Θ(n log n + f(n) log n)
operations. On the other hand, performing f(n) searches on an unsorted
list takes O(nf(n)) operations. We want to find what f(n) makes these
two functions have the same order of magnitude. Clearly, we need nf(n)
to be Ω(n log n), since n log n + f(n) log n is Ω(n log n). To get nf(n) to
be Ω(n log n), we need f(n) to be Ω(log n). On the other hand, if f(n)
is Ω(log n), then n log n is O(nf(n)), and f(n) log n is O(nf(n)), so we
get that n log n + f(n) log n is O(nf(n)), so we need to perform Ω(log n)
searches in order for it to be faster to sort the list before searching.

4 Recall the insertion sort: (This version is slightly different from the version
in the textbook.)

for i = 1 to n do
for j = i− 1 to 0 do

if j = 0 then
move a[i] to the front of the list. {This requires i swaps.}

else
compare a[i] and a[j].
if a[i] > a[j] then

insert a[i] just after a[j] {This requires i− j − 1 swaps.}
go to next i.

end if
end if

end for
end for

Suppose the list a[1], . . . , a[n] is initially sorted, then 100 of its values are
changed at random. How many comparisons and swaps will be needed for

4

the insertion sort to sort the changed list? Explain your answer. [You
only need to give the order of magnitude, e.g. Θ(n log n).]

The number of comparisons needed is Θ(n), and the number of swaps
needed is also Θ(n). Note that if a[i] and a[j] (j < i) are unchanged,
then a[j] < a[i], since the list was initially sorted. Therefore, we only
compare each unchanged element to at most 1 earlier unchanged element.
Therefore, the number of comparisons we make is at most 101(n− 100) +
100(n− 1), since we compare each of the n− 100 unchanged elements to
at most 101 earlier elements, and we compare each of the 100 changed
elements to at most n − 1 elements, since there are only n elements in
the list. (In fact, we can get a smaller upper bound, of about 1

2 this
upper bound, but since we’re only worried about the order of magnitude,
that’s not important.) We therefore perform O(n) comparisons. Also, We
compare every element except the first one to the preceding element, so
we make at least n comparisons, so we make Θ(n) comparisons.

For swaps, note that we never make any swaps that swap elements that
are in the correct relative order, so every swap involves a changed element.
Therefore, we make at most 100n swaps. If the list is already sorted, we
make no swaps, so the number of swaps we make is O(n).

Bonus question

5 Prove that any algorithm for sorting a list using only comparisons and
swaps, must use Ω(n log n) comparisons in the worst case. [Hint: There
are n! possible orders the list can start in. The comparisons made must
distinguish between all of these possibilities. You may use the fact that
log(n!) is Θ(n log n).]

Our algorithm must sort the list in less than Θ(n log n) comparisons, from
any initial permutation (rearrangement) of the list. Each comparison
made has 3 possible outcomes, (less, equal, or greater). Therefore, every
time our algorithm makes a comparison, it partitions the set of possible
starting positions into 3 distinct sets – the starting positions where this
comparison gives a less than result, the starting positions where it gives a
greater than result, and the starting positions where this comparison gives
an equality result. If the number of possible starting positions before this
comparison is N , then one of these partitions must have at least N

3 mem-
bers. In order for our sort algorithm to work, it must partition the set of
possible starting permutations into sets of size 1, since any two different
partitions must have a different collection of swaps made to sort them,
and therefore, must give different results for one of the comparisons. If
the number of comparisons made is at most k, then the set of possible
starting permutations is partitioned into at most 3k sets. In order for

5

these sets to all have at most one element, we must have that 3k > n!.
Therefore, k > log(n!). But log(n!), is Θ(n log n), so k must be Ω(n log n).

6

