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Midterm Examination
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Basic Questions

1. Are the following multiplication tables groups? Justify your answers.

(a)

a b c
a c a c
b a b a
c c a c

This is not a group, since it does not have an identity element. It is also
not assiciative: for example (ba)c = c, but b(ac) = a.

(b)

a b c d e
a a b c d e
b b a e c d
c c d a e b
d d e b a c
e e c d b a

This is not a group — it has 5 elements, and we know the only 5 element
group is cyclic, which this is not, so it is not a group. [It is not associative:
for example (bc)d = b, but b(cd) = d. It does have an identity and inverses
for all elements.]

(c)

a b c d
a a b c d
b b a d c
c c d a b
d d c b a

This is a group. It is the Klein 4 group Z2 × Z2. a is the identity, and all
elements are their own inverses.

2. Which of the following are groups:

(a) N = {n ∈ Z|n > 0} with the operation a ∗ b given by addition without
carrying, that is, write a and b (in decimal, including any leading zeros
necessary) and in each position add the numbers modulo 10, so for example
2456 ∗ 824 = 2270.

This is a group. 0 is the identity element. It is clear that adding two
digits modulo 10 gives another well-defined digit, so the operation is well
defined, and since modular arithmetic is associative, so is ∗. Finally, each
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digit n has an additive inverse modulo 10, given by 10− n and taking the
additive inverse of each digit gives the inverse of the whole number, so
that for example, the inverse of 2439 is 8671.

(b) The set of functions f : R → R such that f(1) = 0 with pointwise
addition (i. e. (f + g)(x) = f(x) + g(x)).

This is a group. Pointwise addition is well-defined on this set, and is
clearly associative. The constantly zero function is the identity, and the
inverse function of f is g given by g(x) = −f(x).

(c) The set of real numbers with the operation x ∗ y = xy
x+y .

This operation is not well defined — if x+y = 0, then x∗y is not defined.

3. How many generators are there in the cyclic group Z28?

Generators of this group are numbers that are coprime to 28. That is,
the generators are {1, 3, 5, 9, 11, 13, 15, 17, 19, 23, 25, 27}, so there are 12
generators.

4. Which of the following are subgroups of Z× Z?

(a) The set of all pairs (a, b) where a is divisible by 6.

This is a subgroup. If we add two elements (a1, b1) + (a2, b2) we get
(a1 +a2, b1 + b2), and since a1 and a2 are both divisible by 6, so is a1 +a2.
0 is divisible by 6. If a is divisible by 6, then so is −a, so this set is closed
under inverses. Therefore, it is a subgroup.

(b) The set of all pairs (a, b) such that a+ 3b = 0.

This is a subgroup. If we add two elements (a1, b1) + (a2, b2) we get
(a1 + a2, b1 + b2), and a1 + a2 + 3(b1 + b2) = a1 + 3b1 + a2 + 3b2 = 0.
Similarly, −a+ 3(−b) = −(a+ 3b) = 0, and 0 + 3× 0 = 0.

(c) The set of all pairs (a, b) such that 2a+ b = 2.

This is not a subgroup because it does not contain 0. Also it is not closed
under addition.

(d) The set of all pairs (a, b) such that 5a+ 2b is divisible by 4.

This is a subgroup. If we add two elements (a1, b1) + (a2, b2) we get
(a1 + a2, b1 + b2), and 5(a1 + a2) + 2(b1 + b2) = 5a1 + 2b1 + 5a2 + 2b2 is
divisible by 4. Similarly, 5(−a)+2(−b) = −(5a+2b) is divisible by 4, and
5× 0 + 2× 0 = 0 is divisible by 4.

(e) The set of all pairs (a, b) such that a2 + b2 is a square number (i.e.
a2 + b2 = c2 for some c ∈ Z.)

This is not a subgroup because it is not closed. For example it contains
(3, 4) and (4, 3) but not (3, 4) + (4, 3) = (7, 7).

(f) The set of all pairs (a, b) such that a > b.

This is not a subgroup because it is not closed under inverses. For example
it contains (3, 1) but not (−3,−1).
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5. Which of the following are subgroups of the group of permutations of the
6 element set {1, 2, 3, 4, 5, 6}?
(a) The set of permutations σ such that σ(1) + σ(4) + σ(5) = 10.

This is not a subgroup, since it contains (12)(364) but not its square:
(463).

(b) The set of permutations σ that either fix the set of odd numbers of
send it to the set of even numbers. That is: either σ({1, 3, 5}) = {1, 3, 5}
or σ({1, 3, 5}) = {2, 4, 6}.
This is a subgroup. The identity element fixes the set of odd numbers.
If a permutation fixes {1, 3, 5} then so does its inverse. If a permutation
sends {1, 3, 5} to {2, 4, 6} then so does its inverse. Finally we can see that
this subset is closed under composition by considering 4 cases.

6. (a) Describe the subgroup of Z× Z12 generated by (2, 8).

This group is cyclic, and it is clearly infinite, so it must be isomorphic to
Z.

(b) Describe the subgroup of Z× Z12 generated by (2, 8) and (3, 4).

This subgroup clearly also contains (2, 8) + (2, 8) − (3, 4) = (1, 0) and
(3, 4)− (1, 0)− (1, 0)− (1, 0) = (0, 4). Meanwhile it is clear that (1, 0) and
(0, 4) generate the subgroup, so this subgroup is isomorphic to Z× Z3.

7. (a) Write σ =

(
1 2 3 4 5 6 7 8 9
2 5 4 9 7 6 8 1 3

)
as a product of disjoint

cycles.

σ = (12578)(394).

(b) What is the order of σ?

The order of σ is the least common multiple of its cycle lengths, which is
15.

(c) Is σ odd or even?

Sigma is a product of a 5-cycle (which is a product of 4 transpositions)
and a 3-cycle (which is a product of 2 transpositions), so it is even.

Alternatively, σ15 is the identity, which is even, and an odd permutation
to an odd power must be odd, so σ must be even.

(d) Which of the following permutations are conjugate to σ in S9?

(i)

(
1 2 3 4 5 6 7 8 9
2 5 9 3 8 1 7 6 4

)
(ii)

(
1 2 3 4 5 6 7 8 9
5 2 7 9 1 8 4 6 3

)
(iii)

(
1 2 3 4 5 6 7 8 9
4 3 2 1 5 6 8 9 7

)
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A permutation is conjugate to σ if and only if it is of the same cycle type.
The above permutations have the following representations as products of
disjoint cycles:

(i) (12586)(394)

(ii) (15)(3749)(68)

(iii) (14)(23)(789)

so only (i) is conjugate to σ.

8. Draw the Cayley graph of A4 with generators (123) and (234).

9. Which of the following subgroups are normal?

(a) The subgroup of the group of symmetries of a hexagon generated by a
120◦ rotation.

This is normal. Conjugating a 120◦ rotation by any symmetry of the
hexagon gives either a 120◦ rotation or a 240◦ rotation.

(b) The subgroup of the group of symmetries of a hexagon generated by a
180◦ rotation.

This is normal. A 180◦ rotation is central (commutes with all symmetries
of the hexagon).

(c) The subgroup of the additive group of real numbers generated by the
numbers whose square is rational.

The additive group of real numbers is abelian, so any subgroup is normal.

(d) The subgroup of the multiplicative group of all invertible 3×3 matrices
with real coefficients consisting of matrices with rational determinant.

The determinant is a homomorphism from the multiplicative group of
invertible 3× 3 matrices to the multiplicative group of non-zero real num-
bers. The rational numbers are a normal subgroup of the real numbers,
so their inverse image under this homomorphism is a normal subgroup of
the multiplicative group of invertible 3× 3 matrices.

This subgroup is the group of permutations that fix the set {1, 2}. This is
not normal, since conjugation by (13) for example does not fix this group.

10. Find the index of 〈(1, 4), (5, 7)〉 in Z× Z.

The cosets of 〈(1, 4), (5, 7)〉 in Z×Z are represented by (0, 0), (1, 2), (1, 3),
(2, 3), (2, 4), (2, 5), (3, 5), (3, 6), (4, 6), (4, 7), (4, 8), (5, 8) and (5, 9), so
the index is 13.

11. Is there a transitive permutation group on 4 elements in which every ele-
ment has order less than 4?

Yes, the subgroup {e, (12)(34), (13)(24), (14)(23)} of S4 is transitive, but
all elements have order 2 or 1.
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12. Which of the following functions are homomorphisms.

(a) f : S6 → S3 given by f(σ)(1) = σ(1) + σ(4)( (mod 3)) f(σ)(2) =
σ(2) + σ(5)( (mod 3)) f(σ)(3) = σ(3) + σ(6)( (mod 3))

This is not a well defined function. For example, if σ = (46), then we have
f(σ)(1) = f(σ)(2) = f(σ)(3) = 1, so f(σ) is not a permutation.

(b) f : D6 → D3 given by f(x) = x if x preserves the triangles formed
by alternating vertices of the hexagon, and f(x) is x followed by a 180◦

rotation otherwise.

This is a homomorphism. If x and y preserve the triangles, then f(x)f(y) =
xy = f(xy); if one of x and y preserves the triangles then f(x)f(y) is xy fol-
lowed by a 180◦ rotation, since 180◦ rotation commutes with all elements of
D6; if neither x nor y preserves the triangles, then f(x)f(y) = xy = f(xy).

13. (a) Calculate the commutator subgroup of Z× S3.

Given elements (a, x) and (b, y) of Z×S3, their commutator is (aba−1b−1, xyx−1y−1) =
(0, xyx−1y−1). The commutator subgroup of S3 is A3, so the commutator
subgroup of Z× S3 is {(0, x)|x is an even permutation}.
(b) Calculate the factor group of Z× S3 over its commutator subgroup.

The factor group of S3 over A3 is Z2, so the factor group of Z × S3 over
its commutator subgroup is Z× Z2.

14. Calculate the centre of S3 × Z6.

Elements (a, x) and (b, y) of S3 × Z6 commute if and only if a and b
commute and x and y commute, so the centre of S3 ×Z6 consists of pairs
of the form (x, y) where x is in the centre of S3 and y is in the centre of
Z6. The centre of S3 is trivial, and Z6 is abelian, so is its own centre.
Therefore the centre of S3 × Z6 is the set of elements (e, x) for x ∈ Z6.

Theoretical Questions

15. Prove that the intersection of two subgroups of a group is another subgroup.

Let H and K be subgroups of a group G. We want to show that H ∩K
is a subgroup of G.

• If x, y ∈ H ∩ K, then x, y ∈ H, so xy ∈ H since H is a subgroup,
and also x, y ∈ K, so xy ∈ K since K is a subgroup. Therefore,
xy ∈ H ∩K.

• We have e ∈ H and e ∈ K, so e ∈ H ∩K.

• If x ∈ H ∩K, then x−1 ∈ H and x−1 ∈ K, so x−1 ∈ H ∩K.
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16. Show that any finite group of even order has an element of order 2. [Hint:
Suppose all non-identity elements have order at least 3. Now partition the
group into a collection of disjoint pairs and the identity element.]

Let G have even order. We can partition the non-identity elements of
G into subsets of the form {x, x−1}. Since there are an odd number of
non-identity elements, one of these partitions must have an odd number
of elements, but this only happens if x = x−1, i.e. when x is of order 2.

17. Let G be a permutation group on a finite set with orbits of sizes a1, . . . , am.
Show that |G| is at least the lowest common multiple of a1, . . . , am.

Recall the orbit stabiliser theorem that the size of the orbit of any ele-
ment under a permutation group divides the order of the group. That
is a1, . . . , an all divide |G|, so |G| is divisible by their lowest common
multiple, and therefore must be at least their lowest common multiple.

18. State and prove Lagrange’s theorem about the order of a subgroup of a
finite group.

Theorem 1 (Lagrange). If G is a finite group, and H is a subgroup of
G, then |H| divides |G|.

Proof. Consider the cosets xH for elements x ∈ G. These form a partition
of G. Each of them has |H| elements, and G is the disjoint union of these
cosets, so |G| is a sum of copies of |H|, so it is divisible by |H|.

19. Show that for subgroups H 6 K 6 G, if (G : K) and (K : H) are finite,
then (G : H) = (G : K)(K : H).

Consider the left cosets ofK. We have thatK is a disjoint union of (K : H)
left cosets of H, so any left coset of K is a disjoint union of (K : H) left
cosets of H. (Let the cosets of H in K be x1H,x2H, . . . , xmH where
m = (K : H); then the cosets of H in aK are ax1H, ax2H, . . . , axmH.)
Now since G is a disjoint union of (G : K) cosets of K, each of which is a
disjoint union of (K : H) cosets of H, we have that G is a disjoint union
of (G : K)(K : H) cosets of H. Therefore (G : H) = (G : K)(K : H).

20. Let H be a subgroup of G. Show that NG(H) = {x ∈ G|xHx−1 = H} is
the largest subgroup of G which contains H as a normal subgroup.

We first need to show that NG(H) is a subgroup.

• Let x, y ∈ NG(H). Now xyH(xy)−1 = xyHy−1x−1 = xHx−1 = H,
so xy ∈ NG(H).

• Let x ∈ NG(H). Then xHx−1 = H, so xH = Hx and so H =
x−1Hx. Therefore x−1 ∈ NG(H).

• Clearly e ∈ NG(H).
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Next we need to show that H is a normal subgroup of NG(H), but this
is automatic by the definition of NG(H). Finally, we need to show that if
K 6 G contains H as a normal subgroup, then K 6 NG(H). Let x ∈ K.
Since H is a normal subgroup of K, we have xHx−1 = H, so x ∈ NG(H).

21. Show that the composite of two group homomorphisms is another group
homomorphism.

Let G
f

//H and H
g

//K be homomorphisms. We want to show that

G
gf

//K is also a homomorphism. We have that gf(xy) = g(f(xy)) =
g(f(x)(f(y)) = g(f(x))g(f(y)) = gf(x)gf(y) as required.

22. Let H 6 G. Show that the commutator subgroup of H is a subgroup of the
commutator subgroup of G, and that the centre Z(H) contains Z(G)∩H.

Let C be the commutator subgroup of G. It clearly contains the com-
mutator subgroup of H because the commutator subgroup of H is gen-
erated by the commutators aba−1b−1 for a, b ∈ H, but then a, b ∈ G, so
aba−1b−1 ∈ C.

Let x ∈ Z(G)∩H. Then x commutes with any element of G. In particular
it commutes with any element of H, so x ∈ Z(H).
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