
MATH 3030, Abstract Algebra
FALL 2012
Toby Kenney

Homework Sheet 2
Due: Wednesday 3rd October: 3:30 PM

Basic Questions

1. (a) Show that the collection of symmetries of a regular hexagon is a group
of order 12.

The symmetries of a regular hexagon consist of 6 reflections — 3 perpen-
dicular to the edges, and 3 in the diagonals, the identity and 5 rotations
about the centre of the hexagon. This is a total of 12 elements. There
is an identity. It is easy to see that reflections are their own inverses,
and that rotation by 60n◦ is inverse to rotation by 60(6 − n)◦, so it just
remains to check associativity. However, a symmetry is a function from
the plane to itself, and the group operation is composition of functions, so
it is associative.

(b) Find all subgroups of this group.

There are many ways to solve this; one way is to look at the reflections
in the subgroups. If a subgroup contains a 60◦ rotation and a reflection,
then it must be the whole of D6. If it contains two reflections with an
angle of 30◦ between them, then they compose to give a 60◦ rotation. The
only way to have three reflections without any two having an angle of 30◦

between them is to have either the three diagonal reflections or the three
edge reflections. Either of these sets of three reflections generates a sub-
group of symmetries of a triangle (the two sets generate symmetry groups
of different triangles). if a subgroup contains only two reflections, then the
reflections must be perpendicular, and the subgroup will consist of those
reflections, a 180◦ rotation and the identity. There are three pairs of
perpendicular reflections, which give three different subgroups. The only
subgroups containing only one reflection are the subgroups containing a
reflection and the identity only. There are 6 such subgroups. Finally, the
subgroups containing no reflections are subgroups of the group of rota-
tions, which is cyclic of order 6, so its non-trivial subgroups are generated
by rotations by 120◦ and 180◦ respectively. In summary, the subgroup
diagram looks like
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2. How many elements are in the subgroup of Z45 generated by 12?

The subgroup generated by 12 consists of the following elements:

{0, 12, 24, 36, 3, 15, 27, 39, 6, 18, 30, 42, 9, 21, 33}

so there are 15 elements.

Alternatively, the subgroup generated by 12 consists of all multiples of 3,
and there are 15 multiples of 3.

3. Which of the following are subgroups of the group of permutations of the
6-element set {1, 2, 3, 4, 5, 6}.
(a) The collection of permutations that fix the subsets {1, 2, 3} and {4, 5}.
Let φ and θ be permutations in S6 that fix the sets {1, 2, 3} and {4, 5}.
We need to show that φ ◦ θ and φ−1 also fix the sets {1, 2, 3} and {4, 5}.
For φ ◦ θ, if x ∈ {1, 2, 3} then we know that θ(x) ∈ {1, 2, 3}, so φ(θ(x)) ∈
{1, 2, 3}. Similarly, if x ∈ {4, 5}, then φ(θ(x)) ∈ {4, 5}. Similarly, if
x ∈ {1, 2, 3}, we want to show that φ−1(x) ∈ {1, 2, 3}. Since φ preserves
the set {1, 2, 3}, we have that {φ(1), φ(2), φ(3)} is a subset of {1, 2, 3}, and
it has 3 elements, so it must be {1, 2, 3}. However, since φ is a bijection,
if we have that φ(x) ∈ {φ(1), φ(2), φ(3)}, we must have x ∈ {1, 2, 3}.
(b) The collection of permutations that send the subset {1, 2} to the subset
{4, 5}.

This is not a subgroup. For example,

(
1 2 3 4 5 6
4 5 1 2 3 6

)
is in this

set, but its square is

(
1 2 3 4 5 6
2 3 4 5 1 6

)
, which is not in the set.

4. Which of the following are subgroups of the additive group of real numbers:

(a) The collection of real numbers greater than or equal to 0.

This is not a subgroup because it does not contain inverses of its elements.
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(b) The collection of numbers whose decimal expansion terminates after a
finite number of decimal places. [Technically, these numbers have two dec-
imal expansions and only one terminates after a finite number of places.]

This is a subgroup — if x terminates after m decimal places and y ter-
minates after n decimal places, then x + y terminates after max(m,n)
decimal places, and −x terminates after m decimal places.

(c) The collection of numbers x such that x2 is a rational number.

This is not a subgroup, since it contains the elements 1 and
√

2, but 1+
√

2
is not in the set, since (1+

√
2)2 = 2+2

√
2, which is not a rational number.

5. How many generators does the cyclic group of order 28 have?

The cyclic group of order 28 is generated by all elements coprime to 28 —
that is by all odd numbers not divisible by 7. There are 12 such numbers.
They are {1, 3, 5, 9, 11, 13, 15, 17, 19, 23, 25, 27}.

6. Draw the Cayley graph of Z15 with generators 9 and 10.
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Standard Questions

7. Show that if a subgroup of the real numbers contains an interval [a, b], with
a < b then it must be the whole group of real numbers.

Let G be a subgroup of the real numbers containing the interval [a, b]. Let
x be a real number. Since G is a subgroup of R, x is in G if and only if
−x is, so assume without loss of generality that x is positive. Since a < b,
we must have b − a > 0, so x

b−a is finite, and we can choose an integer
n > x

b−a . Now since a ∈ G and a+ x
n ∈ G, we have that x

n = a+ x
n−a ∈ G.

Now by repeated addition, we have that x = x
n + x

n + · · ·+ x
n ∈ G.

8. H and K are subgroups of G. The union H ∪K is also a subgroup of G.
Prove that H ⊆ K or K ⊆ H.

Suppose that this is not the case, then we must have some elements x and
y in G with x ∈ H but x 6∈ K and y ∈ K but y 6∈ H. Since H ∪ K is
a subgroup, and we have x ∈ H ∪K and y ∈ H ∪K, we must also have
z = xy ∈ H ∪K. However, if z ∈ H, then y = x−1z ∈ H, contradicting
our assumption. On the other hand, if z ∈ K, then x = zy−1 ∈ K,
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contradicting our assumption. So we have shown that we cannot find such
elements x and y. This means we must have either H ⊆ K or K ⊆ H.

9. Show that a group with only finitely many subgroups is finite. [Hint: con-
sider the cyclic subgroups generated by each element.]

Let G be a group with only finitely many subgroups. Every element of
G is contained in a cyclic subgroup of G, so G is a union of all its cyclic
subgroups. G cannot have an infinite cyclic subgroup, since this subgroup
would be isomorphic to Z, which has infinitely many subgroups, which
would all be subgroups of G. Therefore, all the cyclic subgroups of G are
finite, so G is a union of a finite set of finite sets, so it is finite.

10. The centre Z of a group G is the set of all elements in G that commute
with all elements in G. That is Z = {a ∈ G|(∀x ∈ G)(ax = xa)}. Prove
that Z is a subgroup of G.

We need to show that if x and y are in Z, then so are xy and x−1. For any
element a ∈ G, we have (xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy),
so that xy ∈ Z. Similarly, x−1a = x−1axx−1 = x−1xax−1 = ax−1, so
that x−1 ∈ Z.

11. (a) If G is a group, and every finitely generated subgroup of G is cyclic,
show that G is abelian.

Let x and y be elements of G. The subgroup < x, y > is cyclic, so it is
abelian. Therefore in this subgroup, xy = yx, and this must also hold in
G.

(b) must G be cyclic?

No. Every finitely generated subgroup of the rational numbers is cyclic,
but the rational numbers is not cyclic.
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