ACSC/STAT 4703, Actuarial Models II Fall 2016

Toby Kenney Homework Sheet 1 Due: Friday 30th September: 10:30 PM

Basic Questions

1. Loss amounts follow a gamma distribution with $\alpha = 3$ and $\theta = 8,000$. The distribution of the number of losses is given in the following table:

Number of Losses	Probability
0	0.04
1	0.43
2	0.34
3	0.19

Assume all losses are independent and independent of the number of losses. The insurance company buys excess-of-loss reinsurance on the part of the loss above \$100,000. Calculate the expected payment for this excess-of-loss reinsurance.

- 2. An insurance company models loss frequency as negative binomial with r = 2, $\beta = 6$, and loss severity as pareto with $\alpha = 6$ and $\theta = \$30,000$. Calculate the expected aggregate payments if there is a policy limit of \$100,000 and a deductible of \$5,000 applied to each claim.
- 3. Aggregate payments have a computed distribution. The frequency distribution is negative binomial with r = 5 and $\beta = 5$. The severity distribution is a Pareto distribution with $\alpha = 5$ and $\theta = 16000$. Use a Gamma approximation to aggregate payments to estimate the probability that aggregate payments are more than \$150,000.
- 4. Claim frequency follows a negative binomial distribution with r = 4 and $\beta = 4.4$. Claim severity (in thousands) has the following distribution:

Severity	Probability
1	0.6
2	0.3
3	0.06
4	0.03
5	0.006
6 or more	0.003

Use the recursive method to calculate the exact probability that aggregate claims are at least 6.

5. Use an arithmetic distribution (h = 1) to approximate a Pareto distribution with $\alpha = 6$ and $\theta = 30$.

(a) Using the method of rounding, calculate the mean of the the arithmetic approximation, conditional on lying in the interval 4.5 and 7.5. (That is, calculate $\mathbb{E}(X|4.5 < X < 5.5)$, where X follows the arithmetic distribution used to approximate.)

(b) Using the method of local moment matching, matching 1 moment on each interval, estimate the probability that the value lies between 4.5 and 7.5.

Standard Questions

- 6. The number of claims an insurance company receives follows a Poisson distribution with $\lambda = 84$. Claim severity follows a negative binomial distribution with r = 21 and $\beta = 1.8$. Calculate the probability that aggregate losses exceed \$4000.
 - (a) Starting the recurrence 6 standard deviations below the mean.
 - (b) Using a suitable convolution.