ACSC/STAT 4703, Actuarial Models II Fall 2017

Toby Kenney Homework Sheet 7 Model Solutions

Basic Questions

1. An insurance company has the following data on its policies:

Policy limit	Losses Limited to					
	20,000	50,000	100,000	500,000		
20,000	1,000,000					
50,000	7,040,000	8,010,000				
100,000	23,600,000	28,400,000	30,700,000			
500,000	5,050,000	5,340,000	5,500,000	5,930,000		

Use this data to calculate the ILF from \$20,000 to \$500,000 using

(a) The direct ILF estimate.

For policies with a limit of \$500,000, the losses are 5,930,000, while the losses limited to \$20,000 are 5,050,000. The ILF is therefore $\frac{5930000}{5050000} = 1.17425742574$.

(b) The incremental method.

We calculate the following incremental ILFs:

Limit Increase	ILF
20,000-50,000	$\frac{41750000}{35690000} = 1.16979546091$
50,000 - 100,000	$\frac{35690000}{33740000} = 1.072910492$
$100,\!000\!-\!500,\!000$	$\frac{33740000}{5500000} = 1.07818181818$

The ILF from 20,000 to 500,000 is therefore $1.16979546091 \times 1.072910492 \times 1.07818181818 = 1.35321071516$.

2. For a certain line of insurance, the loss amount per claim follows an exponential distribution with mean θ. If the policy has a deductible per loss set at 0.5θ and a policy limit set at 4θ, by how much will the expected payment per loss increase if there is inflation of 4%?

For the current loss distribution, the expected payment per loss is

$$\int_{0.5\theta}^{4\theta} e^{-\frac{t}{\theta}} dt = \left[-\theta e^{-\frac{t}{\theta}}\right]_{0.5\theta}^{4\theta}$$
$$= \left(e^{-0.5} - e^{-4}\right)\theta$$
$$= 0.588215\theta$$

After the inflation, the expected payment per loss is

$$\int_{0.5\theta}^{4\theta} e^{-\frac{t}{1.04\theta}} dt = \left[-1.04\theta e^{-\frac{t}{1.04\theta}} \right]_{0.5\theta}^{4\theta}$$
$$= 1.04 \left(e^{-\frac{0.5}{1.04}} - e^{-\frac{4}{1.04}} \right) \theta$$
$$= 0.6208237\theta$$

The percentage increase in expected payment per loss is therefore $\frac{0.6208237}{0.5882150}$ - 1 = 5.543664%.

3. An insurance company charges a risk charge equal to the square of the average loss amount, divided by 10,000. It has the following data on a set of 600 claims from policies with limit \$500,000.

Losses Limited to	20,000	50,000	100,000	500,000
Total claimed	4,050,000	5,340,000	5,500,000	5,930,000

Calculate the ILF from \$100,000 to \$500,000.

For the losses limited to \$100,000, the expected loss amount is $\frac{5500000}{600} =$ 9166.666666667. The risk charge is therefore $\frac{9166.666666667^2}{10000} = 8402.77777788$. For losses limited to \$500,000, the expected loss amount is $\frac{5930000}{600} =$ 9883.33333333, and the risk charge is $\frac{9883.3333333^2}{10000} = 9768.02777777$. The ILF is therefore $\frac{9883.33333333+9768.02777777}{9166.666666667+8402.77777778} = 1.11849644268$.

Standard Questions

- 4. An insurer calculates the ILF from \$1,000,000 to \$2,000,000 on a particular policy is 1.074. The average loss per unit of exposure with the policy limit of \$1,000,000 is \$664. The insurer's premium also includes a risk charge equal to the square of the expected loss divided by 2,000. A reinsurer is willing to provide excess-of-loss reinsurance of \$1,000,000 over \$1,000,000 (that is, the attachment point is \$1,000,000 and the limit on the reinsurer's payment is \$1,000,000) for a premium of \$58. Calculate the premium the insurance company should charge for a policy with limit \$2,000,000
 - (a) If they do not buy the excess-of-loss reinsurance

If the insurer does not buy the excess-of-loss reinsurance, the expected loss per unit of exposure is $664 \times 1.074 = 713.136$. The risk charge is $\frac{713.136^2}{2000} = 254.281477248$, so the total premium is 713.136+254.281477248 = \$967.42.

(b) If they buy excess-of-loss reinsurance.

If they buy excess-of-loss reinsurance, the expected loss per unit of exposure is 664, and the risk charge is $\frac{664^2}{2000} = 220.448$, so the total premium is 664 + 220.448 + 58 = \$942.45.

5. An insurer computes the following trend factors for different policy limits:

Policy Limit	\$50,000	\$100,000	\$500,000	\$1,000,000	none
Trend factor	1.03	1.05	1.055	1.059	1.06

The insurance company buys excess-of-loss reinsurance of \$500,000 over \$500,000 on its policies with policy limit \$1,000,000. The loading on this reinsurance is 25%. The reinsurance premium is currently 5% of the insurer's expected loss payments. Calculate the reinsurance premium as a percentage of insurer's expected loss payments after applying the trend factors.

Let x be the expected aggregate payments by the insurer for policies with limit \$500,000, and let l be the ILF from \$500,000 to \$1,000,000. Then the reinsurer's expected payment on the excess-of-loss coverage is x(l-1). The reinsurance premium is therefore 1.25x(l-1), and we are told that this is 5% of x. That is

$$1.25x(l-1) = 0.05x$$

$$1.25(l-1) = 0.05$$

$$l-1 = 0.04$$

$$l = 1.04$$

After the trend factors are applied, the insurer's expected loss payments are 1.055x, while the total expected loss benefits paid to the policy holder are $1.059lx = 1.059 \times 1.04x = 1.10136x$. The reinsurer's expected payment is therefore 1.10136x - 1.055x = 0.04636x, and the reinsurer's premium is $1.25 \times 0.04636x = 0.05795x$. The percentage of insurer's expected loss payments is therefore $\frac{0.05795}{1.055} = 5.49289\%$.