ACSC/STAT 4703, Actuarial Models II Fall 2018 Toby Kenney Homework Sheet 7

Model Solutions

Basic Questions

j

1. An insurance company has the following data on its policies:

Policy limit	Losses Limited to						
	20,000	50,000	100,000	500,000			
20,000	2,500,000						
50,000	9,360,000	10,200,000					
100,000	21,800,000	24,200,000	28,060,000				
500,000	4,390,000	5,020,000	5,880,000	6,060,000			

Use this data to calculate the ILF from \$20,000 to \$500,000 using

(a) The direct ILF estimate.

For policies with policy limit at least \$500,000, claims on losses limited to \$20,000 are \$4,390,000, while claims from losses limited to \$500,000 are \$6,060,000, so the direct ILF estimate is $\frac{6060000}{4390000} = 1.38041002278$

(b) The incremental method.

The ILF from \$20,000 to \$50,000 is $\frac{39420000}{35550000} = 1.10886075949$. The ILF from \$50,000 to \$100,000 is $\frac{33940000}{29220000} = 1.16153319644$. The ILF from \$100,000 to \$500,000 is $\frac{6060000}{5880000} = 1.0306122449$. Therefore, the ILF from \$20,000 to \$500,000 is $1.10886075949 \times 1.16153319644 \times 1.0306122449 = 1.32740649817$.

2. For a certain line of insurance, the loss amount per claim follows a Pareto distribution with parameters $\alpha = 3$ and θ . If the policy has a deductible per loss set at 0.1 θ and a policy limit set at 4 θ , by how much will the expected payment per loss increase if there is inflation of 3%?

The expected payment per loss is

$$\int_{0.1\theta}^{4\theta} \left(\frac{\theta}{\theta+x}\right)^3 dx = \theta \int_{1.1}^5 u^{-3} du$$
$$= \theta \left[-\frac{u^{-2}}{2}\right]_{1.1}^5$$
$$= \frac{1}{2} \left(\frac{1}{1.1^2} - \frac{1}{5^2}\right) \theta$$
$$= 0.393223140496\theta$$

where we have made the substitution $u = \frac{x+\theta}{\theta}$

After inflation the loss is Pareto with parameters $\alpha = 3$ and 1.03θ . The expected payment per loss is therefore

$$\int_{0.1\theta}^{4\theta} \left(\frac{1.03\theta}{1.03\theta + x}\right)^3 dx = 1.03\theta \int_{\frac{1.13}{1.03}}^{\frac{5.03}{1.03}} u^{-3} du$$
$$= 1.03\theta \left[-\frac{u^{-2}}{2}\right]_{\frac{1.13}{1.03}}^{\frac{5.03}{1.03}}$$
$$= \frac{1.03}{2} \left(\left(\frac{1.03}{1.13}\right)^2 - \left(\frac{1.03}{5.03}\right)^2\right)\theta$$
$$= 0.406288135873\theta$$

where we have made the substitution $u = \frac{x+1.03\theta}{1.03\theta}$.

The expected payment will therefore increase by $\frac{0.406288135873\theta - 0.393223140496\theta}{0.393223140496\theta} = 3.3225\%$.

3. An insurance company charges a risk charge equal to the square of the average loss amount, divided by 20,000. It has the following data on a set of 600 claims from policies with limit \$1,000,000.

Losses Limited to	20,000	50,000	100,000	500,000,1,000,000	
Total claimed	9,350,000	11,630,000	13,380,000	14,400,000	15,020,000

Calculate the ILF from \$100,000 to \$1,000,000.

Standard Questions

4. An insurer calculates the ILF from \$500,000 to \$1,000,000 on a particular policy is 1.081. The average loss per unit of exposure with the policy limit of \$1,000,000 is \$1,329. The insurer's premium also includes a risk charge equal to the square of the expected loss divided by 5,000. A reinsurer is willing to provide excess-of-loss reinsurance of \$500,000 over \$500,000 (that is, the attachment point is \$500,000 and the limit on the reinsurer's payment is \$500,000) with a loading of 20%.

(a) Calculate the average loss per unit of exposure for a policy with limit \$500,000

The premium for insurance with policy limit \$1,000,000 is $1329 + \frac{1329^2}{5000} =$ \$1,682.2482. Therefore the premium with policy limit \$500,000 is $\frac{1682.2482}{1.081} =$ \$1,556.19629972. The expected payment with policy limit \$500,000 is therefore the solution to

$$x + \frac{x^2}{5000} = 1556.19629972$$
$$x^2 + 5000x - 7780981.4986 = 0$$
$$x = \frac{-5000 + \sqrt{5000^2 + 4 \times 7780981.4986}}{2}$$
$$x = \$1,245.79517574$$

(The other solution to the quadratic is negative, and so is not a possible answer.)

Thus, the average loss per unit of exposure is \$1,245.79517574.

(b) Calculate the premium the insurance company should charge for a policy with limit \$1,000,000 if they buy excess-of-loss reinsurance.

The expected payment by the reinsurer is 1329-1245.79517574 = 83.20482426. Therefore the reinsurer's premium is $1.2 \times 83.20482426 = 99.845789112$. Therefore the insurer should charge 1556.19629972+99.845789112 = \$1,656.04 for the policy if they buy reinsurance.

5. An insurer computes a trend factors of 1.059 for policies with limit \$500,000. The insurance company buys excess-of-loss reinsurance of \$500,000 over \$500,000 on its policies with policy limit \$1,000,000. The loading on this reinsurance is 30%. The reinsurance premium is 5% of the insurer's expected loss payments. After the trend factors are applied, the reinsurer's loading decreases to 25%, and the reinsurance premium becomes 5.3% of insurer's expected losses. What is the trend factor for policy limit \$1,000,000?

Let the insurer's expected loss payments be x. The reinsurance premium is 0.05x. Since the loading is 30%, the expected reinsurance payments are $\frac{0.05x}{1.3} = 0.0384615384615x$. Therefore the expected total payments are 1.0384615384615x. After applyin the trend factor, the insurer's expected loss payment is 1.059x, so the reinsurance premium is $1.059 \times 0.053x = 0.056127x$. Since the reinsurer's loading has reduced to 25%, the expected reinsurer's payment is $\frac{0.056127x}{1.25} = 0.0449016x$. The total payment is therefore 1.059x + 0.0449016x = 1.1039016x, so the trend factor for policy limit \$1,000,000 is $\frac{1.1039016x}{1.0384615384615x} = 1.06301635556$.