ACSC/STAT 4703, Actuarial Models II

Fall 2020

Toby Kenney
Homework Sheet 5
Model Solutions

Basic Questions

1. An insurance company sets the book pure premium for its fire insurance at $\$ 488$. The expected process variance is 92,063 and the variance of hypothetical means is 56,243. If a company has aggregate claims of $\$ 23,400$ on policies covering a total of 36 properties, calculate the credibility premium for this company's next year's insurance using the Bühlmann model.
The Bühlmann credibility is

$$
Z=\frac{n}{n+\frac{\mathrm{EPV}}{\mathrm{VHM}}}=\frac{36}{36+\frac{92063}{56243}}=0.95650863492
$$

Therefore the credibility premium is

$$
0.95650863492 \times \frac{23400}{36}+0.04349136508 \times 488=\$ 642.95
$$

2. An insurance company has the following data on a Workers' compensation insurance policy for a company.

Year	1	2	3	4	5
Exposure	356	402	550	526	572
Aggregate claims	$\mathbf{\$ 2 5 0 , 2 0 1}$	$\mathbf{\$ 2 9 3}, 114$	$\$ 477,136$	$\$ 482,150$	$\$ 499,300$

The book premium is $\$ 960$ per unit of exposure. The variance of hypothetical means per unit of exposure is 589,000. The expected process variance per unit of exposure is 18,323,900. Using a Bühlmann-Straub model, calculate the credibility premium for Year 6 if the company has 611 units of exposure.

The company has a total of $\$ 2,001,901$ from 2,406 units of exposure. The credibility of 2406 units of exposure is therefore

$$
Z=\frac{2406}{2406+\frac{18323900}{589000}}=0.987234805005
$$

The credibility premium is therefore

$$
0.987234805005 \times \frac{2001901}{2406}+0.012765194995 \times 960=\$ 833.68
$$

per unit of exposure. The premium for 611 units of exposure is therefore $833.68 \times 611=\$ 509,378.48$.
3. An insurance company has the following previous data on aggregate claims:

Policyholder	Year 1	Year 2	Year 3	Year 4	Year 5	Mean	Variance
1	0.00	0.00	2984.19	0.00	0.00	596.838	1781077.99122
2	1401.86	0.00	0.00	5422.18	3521.14	2069.036	5589781.11628
3	0.00	0.00	0.00	512.54	861.47	274.802	156811.77912
4	0.00	597.94	0.00	288.63	488.99	275.112	75379.41947

Calculate the Bühlmann credibility premium for each policyholder in Year 6.
The expected process variance is $\frac{1}{4}(1781077.99122+5589781.11628+156811.77912+$
$75379.41947)=1900762.57652$. The mean aggregate claim is $\frac{1}{4}(596.838+$ $2069.036+274.802+275.112)=803.947$. The variance of observed means is $\frac{(596.838-803.947)^{2}+(2069.036-803.947)^{2}+(274.802-803.947)^{2}+(275.112-803.947)^{2}}{3}=734335.06802$.
Of this, $\frac{1900762.57652}{5}=380152.515304$ is due to process variance, so the variance of hypothetical means is $734335.06802-380152.515304=$ 354182.552716 . This means that the credibility of 5 years of experience is

$$
Z=\frac{5}{5+\frac{1900762.57652}{354182.552716}}=0.482317361842
$$

The credibility premium for each policyholder in Year 6 is therefore given by

$$
\begin{aligned}
& 0.482317361842 \times 596.838+0.517682638158 \times 803.947=\$ 704.05 \\
& 0.482317361842 \times 2069.036+0.517682638158 \times 803.947=\$ 1,414.12 \\
& 0.482317361842 \times 274.802+0.517682638158 \times 803.947=\$ \quad 548.73 \\
& 0.482317361842 \times 275.112+0.517682638158 \times 803.947=\$ 548.88
\end{aligned}
$$

4. An insurance company observes the following numbers of claims from individuals over a seven-year period - that is, the following table gives the number of claims in the past seven years:

No. of claims	0	1	2	3	4	5	6	7	8	9	10
Frequency	1,933	1,788	891	660	491	58	43	46	23	0	1

Assuming the number of claims made by an individual in a year follows a Poisson distribution, calculate the credibility estimate for the expected claim frequency in the following year, of an individual who has made a total of 1 claim in the past 6 years. [Note that this is a different length of history from the individuals in the dataset.]

The number of policies in the data set is $1933+1788+891+660+491+$ $58+43+46+23+0+1=5934$ The expected number of claims in a seven-year period is

$$
\frac{1 \times 1788+2 \times 891+3 \times 660+4 \times 491+5 \times 58+6 \times 43+7 \times 46+8 \times 23+9 \times 0+10 \times 1}{5934}=\frac{8578}{5934}=
$$

The expected square of the number of claims in a seven-year period is

$$
\frac{1^{2} \times 1788+2^{2} \times 891+3^{2} \times 660+4^{2} \times 491+5^{2} \times 58+6^{2} \times 43+7^{2} \times 46+8^{2} \times 23+9^{2} \times 0+10^{2} \times 1}{5934}
$$

The variance of observed number of claims is therefore

$$
\frac{5934}{5933}\left(4.3768115942-1.44556791372^{2}\right)=2.28753049654
$$

For a Poisson distribution, the EPV is equal to the mean, so the VHM for a seven-year period is $2.28753049654-1.44556791372=0.84196258282$. Thus the credibility of 6 years of experience is

$$
Z=\frac{\frac{6}{7}}{\frac{6}{7}+\frac{1.44567991372}{0.84196258282}}=0.332994426748
$$

Therefore, the expected claim frequency for this policyholder in a one-year period is
$0.332994426748 \times \frac{1}{6}+0.667005573252 \times \frac{1.44556791372}{7}=0.193242193263$

Standard Questions

5. Aggregate claims for a given individual policy are modelled as following a Pareto distribution with $\alpha=6$. The first 5 years of experience on this policy are:

Policyholder	Year 1	Year 2	Year 3	Year 4	Year 5	Mean	Variance
1	0.2	17.5	0.4	14.6	1.0	6.74	8.56551
2	1480.6	14.5	970.7	30.9	1873.1	873.96	840.39769
3	700.9	79.9	1417.4	2702.4	1.6	980.44	1118.40544
4	24.7	165.0	0.0	$\mathbf{2 8 . 0}$	210.9	85.72	95.33927

(a) Estimate the EPV and VHM.

The expected claim is $\frac{6.74+873.96+980.44+85.72}{4}=486.715$. A Pareto distribution with $\alpha=6$ and Θ a random variable has mean $\frac{\theta}{5}=0.2 \Theta$ and variance $\frac{6 \Theta^{2}}{5^{2} \times 4}=0.06 \Theta^{2}$. Thus we have that the mean is $\mathbb{E}(\Theta)=\frac{486.715}{0.2}=$ 2433.575. The variance of hypothetical means is $\operatorname{Var}(0.2 \Theta)=0.04 \operatorname{Var}(\Theta)$, and the expected process variance is

$$
0.06 \mathbb{E}\left(\Theta^{2}\right)=0.06\left(\mathbb{E}(\Theta)^{2}+\operatorname{Var}(\Theta)\right)
$$

The variance of observed means is
$\mathrm{VHM}+\frac{\mathrm{EPV}}{5}=\frac{0.04 \operatorname{Var}(\Theta)+0.06 \times 2433.575^{2}+0.06 \operatorname{Var}(\Theta)}{5}=0.02 \operatorname{Var}(\Theta)+71067.4473676$

From the data, the variance of observed means is

$$
\frac{(6.74-486.715)^{2}+(873.96-486.715)^{2}+(980.44-486.715)^{2}+(85.72-486.715)^{2}}{3}=261632.018767
$$

Thus, we get

$$
\begin{aligned}
0.02 \operatorname{Var}(\Theta)+71067.4473676 & =261632.018767 \\
\operatorname{Var}(\Theta) & =\frac{261632.018767-71067.4473676}{0.02} \\
& =9528228.56995 \\
\mathrm{EPV} & =0.06\left(2433.575^{2}+9528228.56995\right) \\
& =927030.951036 \\
\mathrm{VHM} & =0.04 \times 9528228.56995 \\
& =381129.142798
\end{aligned}
$$

(b) Calculate the credibility premium for policyholder 4 in the next year. The credibility of 5 years of experience is

$$
Z=\frac{5}{5+\frac{927030.951036}{381129.142798}}=0.672736757258
$$

Therefore the credibility premium for policyholder 4 is

$$
0.672736757258 \times 85.72+0.327263242742 \times 486.715=\$ 216.95
$$

6. Claim frequency in a year for an individual follows a Poisson with parameter Λt where Λ is the individual's risk factor and t is the individual's exposure in that year. An insurance company collects the following data:

	Year 1		Year 2		Year 3	
Policyholder	Exp	claims	Exp	claims	Exp	claims
1	454	5	531	7	450	3
2	617	1	616	2	539	0
3	728	5	651	2	804	3
4	767	2	761	4	832	3

In Year 4, policyholder 3 has 793 units of exposure. Calculate the credibility estimate for claim frequency for policyholder 3.
The estimates for Λ_{i} from this data are given in the following table

Policyholder	Total Exp	Total claims	$\hat{\Lambda}$
1	1435	15	0.0104529616725
2	1772	3	0.00169300225734
3	2183	10	0.00458085203848
4	2360	9	0.00381355932203

Thus the overall mean is $\frac{0.0104529616725+0.00169300225734+0.00458085203848+0.00381355932203}{4}=$ 0.00513509382258 Under the Poisson model, this is also the EPV per unit of exposure. The variance of observed means is then $\left(\frac{(0.0104529616725-0.00513509382258)^{2}+(0.00169300225734-0.00513509382258)^{2}+(0.00458085203848-0.00513509382258)^{2}+(0.00}{3}\right.$
$1.4060450068 \times 10^{-5}$. However, the variance due to process variance is $0.00513509382258\left(\frac{1}{1435}+\frac{1}{1772}+\frac{1}{2183}+\frac{1}{2360}\right)=1.10045687853 \times 10^{-5}$. Thus the variance of hypothetical means is $1.4060450068 \times 10^{-5}-1.10045687853 \times$ $10^{-5}=3.0558812827 \times 10^{-6}$. Thus, the credibility of n units of exposure is $\frac{n}{n+\frac{0.00513509382258}{3.0558812827 \times 10^{-6}}}$. The credibility for the individuals in the data is

$$
\begin{aligned}
& Z_{1}=\frac{1435}{1435+\frac{0.00513509382258}{3.0558812827 \times 10^{-6}}=0.46061544885} \\
& Z_{2}=\frac{1772}{1772+\frac{0.00513509382258}{3.0558812827 \times 10^{-6}}=0.51326657568} \\
& Z_{3}=\frac{2183}{2183+\frac{0.00513509382258}{3.0558812827 \times 10^{-6}}=0.56504676705} \\
& Z_{4}=\frac{2360}{2360+\frac{0.00513509382258}{3.0558812827 \times 10^{-6}}=0.58410101388}
\end{aligned}
$$

To ensure the estimates are balanced, we take a credibility-weighted mean for the book value.

$$
\hat{\mu}=\frac{0.46061544885 \times 0.0104529616725+0.51326657568 \times 0.00169300225734+0.56504676705 \times 0.004581}{0.46061544885+0.51326657568+0.56504676705+0.58410}
$$

Thus the credibility estimate of claim frequency for policyholder 3 is $0.56504676705 \times$ $0.00458085203848+0.43495323295 \times 0.00494560018799=0.00473950042532$.

