ACSC/STAT 4703, Actuarial Models II

Fall 2020
Toby Kenney
Homework Sheet 7
Model Solutions

Basic Questions

1. An insurance company has the following data on its policies:

Policy limit	20,000	50,000	100,000	500,000
20,000	$1,800,712$			
50,000	$9,744,913$	$11,144,757$		
100,000	$21,397,938$	$36,895,869$	$37,078,835$	
500,000	$16,783,656$	$18,797,737$	$18,915,855$	$20,046,074$

Use this data to calculate the ILF from \$20,000 to \$500,000 using
(a) The direct ILF estimate.

The direct ILF from $\$ 20,000$ to $\$ 500,000$ is $\frac{20046074}{16783656}=1.19438065222$.
(b) The incremental method.

The ILF from $\$ 20,000$ to $\$ 50,000$ is $\frac{11144757+36895869+18797737}{9744913+21397938+16783656}=1.3946011755$
The ILF from $\$ 50,000$ to $\$ 100,000$ is $\frac{37078835+18915855}{36895869+18797737}=1.00540607839$
The ILF from $\$ 100,000$ to $\$ 500,000$ is $\frac{20046074}{18915855}=1.05974982363$
Therefore the ILF from $\$ 20,000$ to $\$ 500,000$ is $1.3946011755 \times 1.00540607839 \times$ $1.05974982363=1.48591814628$.
2. For a certain line of insurance, the loss amount per claim follows a Weibull distribution with parameters $\tau=2$ and θ. If the policy has a deductible per loss set at 0.2θ and a policy limit set at 3θ, by how much will the expected payment per loss increase if there is inflation of 6% ?
The expected payment on the policy is
$\int_{0.2 \theta}^{3 \theta} e^{-\left(\frac{x}{\theta}\right)^{2}} d x=\frac{\theta}{\sqrt{2}} \int_{0.2 \sqrt{2}}^{3 \sqrt{2}} e^{-\frac{u^{2}}{2}} d u=\frac{\theta}{\sqrt{2}}(\Phi(3 \sqrt{2})-\Phi(0.2 \sqrt{2}))=0.2748083 \theta$
After inflation of 6%, the loss amount follows a Weibull distribution with parameters $\tau=2$ and 1.06θ. The expected payment is

$$
\int_{0.2 \theta}^{3 \theta} e^{-\left(\frac{x}{1.06 \theta}\right)^{2}} d x=\frac{1.06 \theta}{\sqrt{2}} \int_{\frac{0.2 \sqrt{2}}{1.06}}^{\frac{3 \sqrt{2}}{1.06}} e^{-\frac{u^{2}}{2}} d u=\frac{\theta}{\sqrt{2}}\left(\Phi\left(\frac{3 \sqrt{2}}{1.06}\right)-\Phi\left(\frac{0.2 \sqrt{2}}{1.06}\right)\right)=0.2791429 \theta
$$

so the expected payment per loss increases by a factor of $\frac{0.2791429}{0.2748083}=$ 1.01577317716.
3. An insurance company charges a risk charge equal to the square of the average loss amount, divided by 50,000. It has the following data on a set of 800 claims from policies with limit $\$ 1,000,000$.

Losses Limited to	20,000	50,000	100,000	500,000	$1,000,000$
Total claimed	$4,030,561$	$9,075,070$	$16,189,091$	$43,178,156$	$51,263,984$

Calculate the ILF from $\$ 50,000$ to $\$ 1,000,000$.
For a policy limit of $\$ 50,000$ the average loss amount is $\frac{9075070}{800}=11343.8375$.
The premium with the risk charge is therefore $11343.8375+\frac{11343.8375^{2}}{50000}=$ 13917.4904845.

For a policy limit of $\$ 1000,000$ the average loss amount is $\frac{51263984}{800}=$ 64079.98. The premium with the risk charge is therefore $64079.98+$ $\frac{64079.98^{2}}{50000}=146204.856736$. Therefore the ILF is $\frac{146204.856736}{13917.4904845}=10.5051163425$.

Standard Questions

4. An insurer calculates the ILF from $\$ 500,000$ to $\$ 1,000,000$ on a particular policy is 1.103. The average loss per unit of exposure with the policy limit of $\$ 1,000,000$ is $\$ 2,047$. The insurer's premium also includes a risk charge equal to the square of the expected loss divided by 10,000. A reinsurer is willing to provide excess-of-loss reinsurance of $\$ 500,000$ over $\$ 500,000$ (that is, the attachment point is \$500,000 and the limit on the reinsurer's payment is $\$ 500,000$) with a loading of 20%.
(a) Calculate the average loss per unit of exposure for a policy with limit $\$ 500,000$.
With the risk charge, the insurer's premium for one unit of exposure with limit $\$ 1,000,000$ is $2047+\frac{2047^{2}}{10000}=2466.0209$. Therefore, the insurer's premium for a policy with limit $\$ 500,000$ is $\frac{2466.0209}{1.103}=2235.73970988$. Now the expected loss per unit of exposure for a policy with limit $\$ 500,000$ is the solution to $x+\frac{x^{2}}{10000}=2235.73970988$ which is $x=\sqrt{5000^{2}+22357397.0988}-$ $5000=1881.67109784$.
(b) Calculate the premium the insurance company should charge for a policy with limit $\$ 1,000,000$ if they buy excess-of-loss reinsurance.
The expected payment on the reinsurance policy per unit of exposure is $2047-1881.67109784=165.32890216$. With a loading of 20%, the reinsurance premium is $1.20 \times 165.32890216=198.394682592$. Therefore if the insurer buys reinsurance, their premium would be $2235.73970988+$ $198.394682592=\$ 2,434.13$.
5. An insurer sells a policy with limit $\$ 1,000,000$ with the premium equal to the expected payment plus a risk charge equal to the square of expected loss divided by 10,000. It calculates a trend factor of 1.047 for expected payments on this policy. A reinsurer offers excess-of-loss reinsurance of $\$ 500,000$ over $\$ 500,000$ for a 20% loading on the expected reinsurance payment. The trend factor for expected payments on a policy with limit $\$ 500,000$ is 1.044. The insurer finds that buying reinsurance would not affect its premium before applying trend factors. After applying trend factors, buying reinsurance allows the insurer to lower its premium by 0.5%. What is the expected payment on the policy with limit $\$ 1,000,000$ before trend factors are applied.

Since buying reinsurance would not change the premium, let x be the expected payment with a policy limit of $\$ 1,000,000$ and let y be the expected payment with a policy limit of $\$ 500,000$. The premium without reinsurance is $x+\frac{x^{2}}{10000}$, while the premium with reinsurance is $y+\frac{y^{2}}{10000}+$ $1.2(x-y)$. Since these are equal, we get

$$
\begin{aligned}
x-y+\frac{x^{2}-y^{2}}{10000} & =1.2(x-y) \\
\frac{(x+y)(x-y)}{10000} & =0.2(x-y) \\
x+y & =2000
\end{aligned}
$$

After applying the trend factors, we have that the expected payment on the policy with limit $\$ 1,000,000$ is $1.047 x$, and the expected payment on the policy with limit $\$ 500,000$ is $1.044 y$. The new premium without reinsurance is therefore $1.047 x+\frac{1.047^{2} x^{2}}{10000}$, and the new premium with reinsurance is $1.044 y+\frac{1.044^{2} y^{2}}{10000}+1.2(1.047 x-1.044 y)$. Since this is 4.5% lower than the premium without insurance, we get

$$
\begin{aligned}
0.995\left(1.047 x+\frac{1.047^{2} x^{2}}{10000}\right) & =1.044 y+\frac{1.044^{2} y^{2}}{10000}+1.2(1.047 x-1.044 y) \\
\frac{1.090727955 x^{2}-1.089936 y^{2}}{10000} & =0.214635 x-0.2088 y \\
1.089936(x-y)(x+y)+0.000791955 x^{2} & =4234.35 x-2088(x+y) \\
2179.872(x-y)+0.000791955 x^{2} & =4234.35 x-4176000 \\
0.000791955 x^{2}+125.394 x-183744 & =0 \\
x & =\frac{-125.394+\sqrt{125.394^{2}+4 \times 0.000791955 \times 183744}}{2 \times 0.000791955}=1452
\end{aligned}
$$

