Homework 2

Recall the rigorous definition of what it means that a sequence $a_n \to l$ (i.e. $\lim_{n \to \infty} a_n = l$):

- "For every given $\varepsilon > 0$, there exists N (which depends on the choice of ε) such that $|a_n l| < \varepsilon$ for all $n \ge N$."
- 1. Consider the constant sequence 1, 1, 1, ... (i.e. $a_n = 1$ for all n).
 - (a) Show, using the rigorous definition, that $\lim_{n \to \infty} a_n = 1$.
 - (b) Show, using the rigorous definition, that $\lim_{n \to \infty} a_n \neq 0$.
- 2. (a) Let $x_n = 2^{-n}$. Show that $x_n \to 0$ as $n \to \infty$. (b) Let $x_0 = 0.1$ and and define iteratively, $x_{n+1} = (0.4 + x_n) x_n$ for $n \ge 0$. Compute x_1, x_2 . Show rigorously that $x_n \to 0$.
- 3. Show that if $a_n \to l$ with l > 0 then $1/a_n \to 1/l$.
- 4. [BONUS] The *logistic map* is defined iteratively by $x_{n+1} = rx_n (1 x_n)$ where r is a parameter. Take $x_0 = 0.5$ for simplicity.

(b) Fix r = 1.5, and compute the first 10 iterates of x_n . You can use a computer for this. What is the limit $\lim_{n\to\infty} x_n$ for this value of r?

(c) Repeat part (b) for r = 2, 2.5, 3, 3.2, 3.5, 3.52. Comment on anything interesting that you observe.

(d) You should see that something weird happens at r = 3. For $r \in (1,3)$, based on your observations from part (c), can you conjecture what is the limit $\lim_{n\to\infty} x_n$ as a function of r?

- (e) Conjecture what happens when $r \in (3, 3.5)$.
- 5. [BONUS]: Consider a sequence $x_{n+1} = x_n^{x_n}$, with $x_0 = 0.5$. Using a computer, convince yourself that $x_n \to 1$ very slowly. Using a computer, determine how big should n be, so that $|x_n 1| < 0.01$? so that $|x_n 1| < 0.001$? Based on your observations, guess how big should n be so that $|x_n 1| < \varepsilon$ for any given (small) ε ?
- 6. Let $f(x) = \frac{1}{2-x}$.
 - (a) Find a number $\delta > 0$ such that $|f(x) f(1)| \le 0.1$ whenever $|x 1| < \delta$.
 - (b) Given an $\varepsilon > 0$, find a number $\delta > 0$ such that $|f(x) f(1)| \le \varepsilon$ whenever $|x 1| < \delta$.
 - (c) Conclude that f(x) is continuous at x = 1.
- 7. Show that the equation $x^3 15x + 1 = 0$ has three solutions on the interval [-4, 4].

Solution. Let $f(x) = x^3 - 15x + 1$. Then f(-4) < 0, f(0) > 1, f(1) < 0 and f(4) > 0. Hence my intermediate value theorem, there is a root in (-4, 0), another root in (0, 1) and a third root in (1, 4).

- 8. Show that the function $f(x) = \sin(x-a)\sin(x-b) + x$ has the value (a+b)/2 at some point x.
- 9. Suppose that f is continuous on the interval [0,1] and that $0 \le f(x) \le 1$ for all $x \in [0,1]$. Show that there is a number $c \in [0,1]$ such that f(c) = c.
- 10. Prove that at any instant in time, there exist two points on the equator that have the same temperature and that are antipodal to each other. (hint: you may assume that the temperature is a continuous function of space).