
Homework 2

Recall the rigorous definition of what it means that a sequence an → l (i.e. lim
n→∞

an = l):

• “For every given ε > 0, there exists N (which depends on the choice of ε) such that |an − l| < ε for
all n ≥ N.”

1. Consider the constant sequence 1, 1, 1, . . . (i.e. an = 1 for all n).

(a) Show, using the rigorous definition, that lim
n→∞

an = 1.

(b) Show, using the rigorous definition, that lim
n→∞

an 6= 0.

Solution. (a) Let an = 1. Then |an − 1| = 0 for all n. So given any ε > 0, let N = 1. Then
|an − 1| < ε for all n ≥ 1.

(b) Let ε = 0.5. Note that |an − 0| = 1 > 0.5 for all n. So then there exists no N such that
|an − 0| < 0.5 for all n ≥ N.

2. (a) Let xn = 2−n. Show that xn → 0 as n→∞.
(b) Let x0 = 0.1 and and define iteratively, xn+1 = (0.4 + xn)xn for n ≥ 0. Compute x1, x2, . Show
rigorously that xn → 0.

Solution. (a) Given ε > 0, let N be such that 2−N < ε. Then 2−n < ε for all n ≥ N, since
2−n ≤ 2−N whenever n ≥ N.
(b) To show xn → 0, note that x1 = (0.4 + 0.1)x0 = 0.05 ≤ 0.1, then x2 = (0.4 + x1)x1 ≤
(0.4+0.1)x1 ≤ 0.5x1 and similarly, xn+1 ≤ 0.5xn for all n ≥ 1. This means that 0 ≤ xn ≤ 0.1×2−n.
Since 0.1× 2−n → 0 and xn is “squeezed” between 0 and 0.1× 2−n, xn also → 0.

3. Show that if an → l with l > 0 then 1/an → 1/l.

Solution.
∣∣∣ 1
an
− 1

l

∣∣∣ = |an−l|
|anl| . Since an → l > 0, there exists N1 such that an > l − 0.1l = 0.9l

whenever n ≥ N1. That means that |an−l|
|anl| ≤

1
0.9l |an − l| for all N ≥ N1. Next, given ε2 (to be

specified later), let N2 be such that |an − l| ≤ ε2 for all n ≥ N2. Then for n ≥ max (N1, N2) we
have ∣∣∣∣ 1

an
− 1

l

∣∣∣∣ ≤ 1

0.9l
|an − l| ≤

ε2
0.9l

So given ε, choose ε2 such that ε = ε2
0.9l (i.e. ε2 = 0.9l × ε), and choose N ≥ max (N1, N2) . Then∣∣∣ 1

an
− 1

l

∣∣∣ < ε for all n ≥ N. �

4. [BONUS] The logistic map is defined iteratively by xn+1 = rxn (1− xn) where r is a parameter.
Take x0 = 0.5 for simplicity.

(b) Fix r = 1.5, and compute the first 10 iterates of xn. You can use a computer for this. What is
the limit limn→∞ xn for this value of r?

(c) Repeat part (b) for r = 2, 2.5, 3, 3.2, 3.5, 3.52. Comment on anything interesting that you
observe.

(d) You should see that something weird happens at r = 3. For r ∈ (1, 3), based on your observations
from part (c), can you conjecture what is the limit limn→∞ xn as a function of r?

(e) Conjecture what happens when r ∈ (3, 3.5) .

5. [BONUS]: Consider a sequence xn+1 = xxn
n , with x0 = 0.5. Using a computer, convince yourself that

xn → 1 very slowly. Using a computer, determine how big should n be, so that |xn − 1| < 0.01? so
that |xn − 1| < 0.001? Based on your observations, guess how big should n be so that |xn − 1| < ε
for any given (small) ε?
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6. Let f(x) = 1
2−x .

(a) Find a number δ > 0 such that |f(x)− f(1)| ≤ 0.1 whenever |x− 1| < δ.

(b) Given an ε > 0, find a number δ > 0 such that |f(x)− f(1)| ≤ ε whenever |x− 1| < δ.

(c) Conclude that f(x) is continuous at x = 1.

Solution. (a) f(1) = 1. So we want ∣∣∣∣ 1

2− x
− 1

∣∣∣∣ ≤ 0.1 ⇐⇒

0.9 ≤ 1

2− x
≤ 1.1 ⇐⇒

1/1.1 ≤ 2− x ≤ 1/0.9 ⇐⇒
0.8889 ≤ x ≤ 1.0909

−0.1111 ≤ x− 1 ≤ 0.0909.

So choose δ = 0.0909 (or any smaller will also do). Then run these inequalities backwards, showing

that
∣∣∣ 1
2−x − 1

∣∣∣ ≤ 0.1 whenever |x− 1| < δ.

(b) Similar to part (a) we have: ∣∣∣∣ 1

2− x
− 1

∣∣∣∣ ≤ ε ⇐⇒ (1)

1

1 + ε
≤ 2− x ≤ 1

1− ε
⇐⇒

−ε
1 + ε

≤ 1− x ≤ ε

1− ε
(2)

Equation (2) holds when |1− x| ≤ min
(

ε
1+ε ,

ε
1−ε

)
= ε

1+ε . So we choose δ = ε
1+ε .

(c) Part (b) shows that limx→1 f(x) = f(1). Hence f(x) is continuous at x = 1.

7. Show that the equation x3 − 15x+ 1 = 0 has three solutions on the interval [−4, 4].

Solution. Let f(x) = x3 − 15x + 1. Then f(−4) < 0, f(0) > 1, f(1) < 0 and f(4) > 0. Hence
by intermediate value theorem, there is a root in (−4, 0) , another root in (0, 1) and a third root in
(1, 4) .

8. Show that the function f(x) = sin(x− a) sin(x− b) + x has the value (a+ b)/2 at some point x.

Solution. Note that f(a) = a and f(b) = b. So there exists c such that f(c) = (a+ b)/2.

9. Suppose that f is continuous on the interval [0, 1] and that 0 ≤ f(x) ≤ 1 for all x ∈ [0, 1] . Show
that there is a number c ∈ [0, 1] such that f(c) = c.

Solution. Let g(x) = f(x) − x. Then g(0) ≥ 0 and g(1) ≤ 0. Hence there is a c ∈ [0, 1] such that
g(c) = 0 or f(c) = c.

10. Prove that at any instant in time, there exist two points on the equator that have the same tem-
perature and that are antipodal to each other. (hint: you may assume that the temperature is a
continuous function of space).

Solution. Let T (x) be the temperature on the equator, where x is in degrees of longitude (from
-180 to 180). Let g(x) = T (x) − T (x + 180). Then g(−180) = −g(0) since T (−180) − T (180). So
by intermediate value theorem, there is an x such that g(x) = 0, or T (x) = T (x+ 180).
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