Homework 2

Recall the rigorous definition of what it means that a sequence $a_n \to l$ (i.e. $\lim_{n \to \infty} a_n = l$):

- "For every given $\varepsilon > 0$, there exists N (which depends on the choice of ε) such that $|a_n l| < \varepsilon$ for all $n \ge N$."
- 1. Consider the constant sequence 1, 1, 1, ... (i.e. $a_n = 1$ for all n).
 - (a) Show, using the rigorous definition, that $\lim_{n \to \infty} a_n = 1$.
 - (b) Show, using the rigorous definition, that $\lim_{n \to \infty} a_n \neq 0$.

Solution. (a) Let $a_n = 1$. Then $|a_n - 1| = 0$ for all n. So given any $\varepsilon > 0$, let N = 1. Then $|a_n - 1| < \varepsilon$ for all $n \ge 1$.

(b) Let $\varepsilon = 0.5$. Note that $|a_n - 0| = 1 > 0.5$ for all n. So then there exists no N such that $|a_n - 0| < 0.5$ for all $n \ge N$.

2. (a) Let $x_n = 2^{-n}$. Show that $x_n \to 0$ as $n \to \infty$.

(b) Let $x_0 = 0.1$ and and define iteratively, $x_{n+1} = (0.4 + x_n) x_n$ for $n \ge 0$. Compute x_1, x_2 , Show rigorously that $x_n \to 0$.

Solution. (a) Given $\varepsilon > 0$, let N be such that $2^{-N} < \varepsilon$. Then $2^{-n} < \varepsilon$ for all $n \ge N$, since $2^{-n} \le 2^{-N}$ whenever $n \ge N$.

(b) To show $x_n \to 0$, note that $x_1 = (0.4 + 0.1)x_0 = 0.05 \le 0.1$, then $x_2 = (0.4 + x_1)x_1 \le (0.4+0.1)x_1 \le 0.5x_1$ and similarly, $x_{n+1} \le 0.5x_n$ for all $n \ge 1$. This means that $0 \le x_n \le 0.1 \times 2^{-n}$. Since $0.1 \times 2^{-n} \to 0$ and x_n is "squeezed" between 0 and 0.1×2^{-n} , x_n also $\to 0$.

3. Show that if $a_n \to l$ with l > 0 then $1/a_n \to 1/l$.

Solution. $\left|\frac{1}{a_n} - \frac{1}{l}\right| = \frac{|a_n - l|}{|a_n l|}$. Since $a_n \to l > 0$, there exists N_1 such that $a_n > l - 0.1l = 0.9l$ whenever $n \ge N_1$. That means that $\frac{|a_n - l|}{|a_n l|} \le \frac{1}{0.9l} |a_n - l|$ for all $N \ge N_1$. Next, given ε_2 (to be specified later), let N_2 be such that $|a_n - l| \le \varepsilon_2$ for all $n \ge N_2$. Then for $n \ge \max(N_1, N_2)$ we have

$$\left|\frac{1}{a_n} - \frac{1}{l}\right| \le \frac{1}{0.9l} \left|a_n - l\right| \le \frac{\varepsilon_2}{0.9l}$$

So given ε , choose ε_2 such that $\varepsilon = \frac{\varepsilon_2}{0.9l}$ (i.e. $\varepsilon_2 = 0.9l \times \varepsilon$), and choose $N \ge \max(N_1, N_2)$. Then $\left|\frac{1}{a_n} - \frac{1}{l}\right| < \varepsilon$ for all $n \ge N$.

4. [BONUS] The *logistic map* is defined iteratively by $x_{n+1} = rx_n (1 - x_n)$ where r is a parameter. Take $x_0 = 0.5$ for simplicity.

(b) Fix r = 1.5, and compute the first 10 iterates of x_n . You can use a computer for this. What is the limit $\lim_{n\to\infty} x_n$ for this value of r?

(c) Repeat part (b) for r = 2, 2.5, 3, 3.2, 3.5, 3.52. Comment on anything interesting that you observe.

(d) You should see that something weird happens at r = 3. For $r \in (1,3)$, based on your observations from part (c), can you conjecture what is the limit $\lim_{n\to\infty} x_n$ as a function of r?

- (e) Conjecture what happens when $r \in (3, 3.5)$.
- 5. [BONUS]: Consider a sequence $x_{n+1} = x_n^{x_n}$, with $x_0 = 0.5$. Using a computer, convince yourself that $x_n \to 1$ very slowly. Using a computer, determine how big should n be, so that $|x_n 1| < 0.01$? so that $|x_n 1| < 0.001$? Based on your observations, guess how big should n be so that $|x_n 1| < \varepsilon$ for any given (small) ε ?

6. Let $f(x) = \frac{1}{2-x}$.

- (a) Find a number $\delta > 0$ such that $|f(x) f(1)| \le 0.1$ whenever $|x 1| < \delta$.
- (b) Given an $\varepsilon > 0$, find a number $\delta > 0$ such that $|f(x) f(1)| \le \varepsilon$ whenever $|x 1| < \delta$.
- (c) Conclude that f(x) is continuous at x = 1.

Solution. (a) f(1) = 1. So we want

$$\left|\frac{1}{2-x} - 1\right| \le 0.1 \iff$$

$$\begin{array}{c} 0.9 \leq \frac{1}{2-x} \leq 1.1 \iff \\ 1/1.1 \leq 2-x \leq 1/0.9 \iff \\ 0.8889 \leq x \leq 1.0909 \\ -0.1111 \leq x-1 \leq 0.0909. \end{array}$$

So choose $\delta = 0.0909$ (or any smaller will also do). Then run these inequalities backwards, showing that $\left|\frac{1}{2-x} - 1\right| \leq 0.1$ whenever $|x - 1| < \delta$.

(b) Similar to part (a) we have:

$$\left|\frac{1}{2-x} - 1\right| \le \varepsilon \iff (1)$$

$$\frac{1}{1+\varepsilon} \le 2 - x \le \frac{1}{1-\varepsilon} \iff \frac{-\varepsilon}{1+\varepsilon} \le 1 - x \le \frac{\varepsilon}{1-\varepsilon} \tag{2}$$

Equation (2) holds when $|1 - x| \le \min\left(\frac{\varepsilon}{1+\varepsilon}, \frac{\varepsilon}{1-\varepsilon}\right) = \frac{\varepsilon}{1+\varepsilon}$. So we choose $\delta = \frac{\varepsilon}{1+\varepsilon}$.

- (c) Part (b) shows that $\lim_{x\to 1} f(x) = f(1)$. Hence f(x) is continuous at x = 1.
- 7. Show that the equation $x^3 15x + 1 = 0$ has three solutions on the interval [-4, 4]. Solution. Let $f(x) = x^3 - 15x + 1$. Then f(-4) < 0, f(0) > 1, f(1) < 0 and f(4) > 0. Hence by intermediate value theorem, there is a root in (-4, 0), another root in (0, 1) and a third root in (1, 4).
- 8. Show that the function $f(x) = \sin(x-a)\sin(x-b) + x$ has the value (a+b)/2 at some point x. Solution. Note that f(a) = a and f(b) = b. So there exists c such that f(c) = (a+b)/2.
- 9. Suppose that f is continuous on the interval [0,1] and that $0 \le f(x) \le 1$ for all $x \in [0,1]$. Show that there is a number $c \in [0,1]$ such that f(c) = c.

Solution. Let g(x) = f(x) - x. Then $g(0) \ge 0$ and $g(1) \le 0$. Hence there is a $c \in [0, 1]$ such that g(c) = 0 or f(c) = c.

10. Prove that at any instant in time, there exist two points on the equator that have the same temperature and that are antipodal to each other. (hint: you may assume that the temperature is a continuous function of space).

Solution. Let T(x) be the temperature on the equator, where x is in degrees of longitude (from -180 to 180). Let g(x) = T(x) - T(x + 180). Then g(-180) = -g(0) since T(-180) - T(180). So by intermediate value theorem, there is an x such that g(x) = 0, or T(x) = T(x + 180).