
Homework 5

1. Population tends to grow at a rate roughly proportional to the population present. The population
of the US was approximately 179 million in 1960 and 205 million in 1970. (a) Use this information
to estimate the population in 1940. (b) According to this model, when would US population exceed
300 million? (c) Use google to look up the actual US population. Comment on how well did the
model do.

Solution. This is exponential growth, y = Cert where y is population size, r is growth rate and C
is some constant. Let’s take 1960 to be t = 0. Then y(0) = 179 and y(10) = 205, so that C = 179
and e10r = 205/179 so that r = 0.01356. (a) 1940 corresponds to t = −20 at which point

y(−20) = 179e−0.271 = 136.5

So population in 1940 is about 136.5 million. (b) Solving y = 300 we obtain t = ln(300/179)
r = 38.07

which corresponds to the year 1998. (c) The year 2018 corresponds to t = 58. Then y(58) = 393.
Actually, according to google, the US population in 2018 is 323 million. So the exponential model
over-estimates the population size significantly this far out (by 21%). (Another point of comparison
is 1998, when the model predicts US population to exceed 300 million, whereas the actual population
that year was 282 million; overestimation by only 6.4%).

2. A pesticide sprayed onto tomatoes decomposes into a harmless substance at a rate proportional to
the amount of the pesticide M(t) still unchanged at time t. If the initial amount of 10 points is
sprayed onto an acre reduces to 5 pounds in 6 days, when will 80% of the pesticide be decomposed?

Solution. Here, we have exponential decay M = Ce−rt with C = 10, 10e−6r = 5 so that
6r = log (2) =⇒ r = 0.1155. We want t such that e−rt = 0.2 which gives t = − log(0.2)/r = 13.9.
So it takes 13.9 days.

3. The rate of decay of radium is proportional to the amount present at any time. If 60 mg of radium
are present now and the half-life of radium (the time required for half of the substance to decay) is
1690 years, how much radium will be present 100 years from now?

Solution. We have y = 60e−rt and half-life of 1690 years meants that e−r1690 = 0.5, Solution is
r = 0.0004101, and in 100 years there will be 60e−r100 = 57.59 mg of radium left.

4. During a cold night, the heating in the house broke down. The house cooled from 20 degrees to
15 degrees in 2 hours. The outside temperature is -20 degrees. How long will it be before the
temperature in the house goes down to 10 degrees?

Solution. Newton’s law of cooling says that y′ = −ry, where y = T − (−20) is the difference
between the outside and house temp. Moreover y(0) = 40 and y(2) = 35, so that y = 40e−rt

with 40e−2r = 35, so that r = 0.0676. Temp will be 10 degrees inside when y = 30. So we solve
30 = 40e−0.0676t for t to obtain t = 4.25 hours.

5. A marble rolls along a straight line in such a manner that its velocity is directly proportional to
the distance it has yet to roll. If the total distance it rolls is 5 meters, and after 1 second it has
rolled 2 meters, express the distance it has rolled as a function of time. How long will it take for
the marble to roll 4 meters?

Solution. We have y′ = −ay, where y is the distance yet to roll. The minus sign is because it’s
rolling towards the origin. And we have y(0) = 5, y(1) = 3, so that y = 5et log(3/5). It will roll 4
meters when y = 1. So we solve for t :

1 = 5et log(3/5) =⇒ t =
log(1/5)

log(3/5)
= 3.15.

6. A certain fish reproduces at a rate proportional to its total population y(t). Moreover, it is harvested
at a rate of of 2 million fish per year. Thus, y(t) (measured in millions) satisfies

dy

dt
= ry − 2
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where r is its reproduction rate. When harvesting began, there were estimated to be 6 million fish
in a lake. After one year, only 5 million fish remained. (a) How many fish will remained after two
years? (b) If the harvesting continues unchecked, how long will it be before no fish remain? (c) How
should you adjust the harvesting rate to prevent extinction of the fish?

Solution. (a) We need to solve the ODE. Write ry − 2 = r (y − 2/r) and change variables,
u = y − 2/r. Then du/dt = ru so that u = Cert and

y = Cert + 2/r.

Plug in y(0) = 6, y(1) = 5:

6 = C + 2/r

5 = Cer + 2/r

so that
C = 6− 2/r

and
5 = (6− 2/r) er + 2/r. (1)

The equation (1) cannot be solved explicitly and must be solved numerically. We obtain

r = 0.181, C = −5.03

Then y(2) = Ce2r + 2/r = 3.801. So 3.8 million fish remain after two years.

(b) All fish will be gone when y = 0 or t = 1
r log(−2Cr ) = 4.33 years.

(c) For a general harvesting rate, we have

dy

dt
= ry − h.

The harvesting and growth are precisely in a balance when ry − h = 0. But then y = h/r is a
constant so that y(0) = y(t) = h/r. So we choose h = ry(0) = 1.086. When h > 1.086, all fish go
extinct eventually. When h < 1.086, fish population grows. So we must have h ≤ 1.086 to insure
fish survival.

7. Find derivatives of the following functions: (a) y = xx (b) y = x1/x (c) y = xxx

.

(a) y = exp (x log x) so that

y′ = (x log x)
′
exp (x log x)

= (log x + 1) exp (x log x) .

(b) y = exp
(
1
x log x

)
so that

y′ =

(
1

x
log x

)′
exp

(
1

x
log x

)
=

(
1

x2
− 1

x2
log x

)′
exp

(
1

x
log x

)
(c) y = exp

(
log xxx)

= exp (xx log x) so

y′ = (xx log x)
′
exp (xx log x)

=

(
(xx)

′
log x +

xx

x

)
exp (xx log x)

=
(
(log x + 1) exp (x log x) log x + xx−1) exp (xx log x)

=
(
(log x + 1) log x + x−1

)
xxxxx

2



8. In class, we started with lnx and then defined ex as its inverse. In this exercise, we will define ex

first, then define lnx as its inverse. To define ex, assume that there exists a unique differentiable
function f(x) that is defined for all x and that satisfies the equation,

f ′(x) = f(x) and y(0) = 1. (2)

(a) Show that f(x + y) = f(x)f(y). Hint: use the fact that the solution to (2) is unique.

(b) Show that f(−x) = 1/f(x).

(c) [BONUS]: show that f(x) > 0 for all x.

(d) Show that f(x) is increasing. Hint: use part (c).

(e) Let g(x) be the inverse of f(x). [such an inverse exists since f(x) is increasing]. Show that
g′(x) = 1

x and that g(1) = 0.

We then call f(x) the ”exponential”, f(x) = ex, and g(x) the ”logarithm”, g(x) = ln(x).

(f) We define e = f(1). Using part (a), show that f(x) = ex, at least for integer x (in fact this is
true for all real x).

(g) Show that f(x) ≥ 1 for x ≥ 0, then show that f(x) ≥ 1 + x for x ≥ 0. Conclude that e ≥ 2.

(h) Show that ex →∞ as x→∞ and that f(x)→ 0 as x→ −∞.

Solutions. (a) Let g(x) = f(x+y)
f(y) . Then g′(x) = f ′(x+y)

f(y) = f(x+y)
f(y) = g(x), and g(0) = 1. So

both g and f satisfy (2), and therefore by uniqueness, g = f.

(b) By part (a), f(x)f(−x) = f(x− x) = f(0) = 1.

(c) Suppose that f(x) is negative somewhere. Then let x be the first positive root of f (it
exists by intermediate value theorem). But then by mean value theorem, there exists c ∈ (0, x)

such that f ′(c) = f(x)−f(0)
x = −1/x < 0. But then f(c) = f ′(c) < 0, which contradics the fact

that x > c is the first positive root of f.

(d) Since f is positive, then f ′ = f is also positive everywhere, so f is increasing.

(e) The inverse satisfies: f(g(x)) = x. Differentiating we get

f ′(g(x))g′(x) = 1,

f(g(x))g′(x) = 1,

xg′(x) = 1

g′(x) =
1

x
.

(f) This is a direct consequence of (a). For example f(2) = f(1 + 1) = f(1)2 = e2, f(3) =
f(2 + 1) = e2f(1) = e3 etc.

(g) f(x) is increasing and f(0) = 1, so then f(x) ≥ 1 for x ≥ 0. Next, f ′(x) = f(x) ≥ 1, which
means that f(x) ≥ x + f(0) = x + 1. Then e = f(2) ≥ 1 + 1 = 2.

(h) We showed in (g) that f(x) ≥ 1 + x, and so ex ≥ 1 + x → ∞ as x → ∞. On the other
hand, e−x = 1

ex → 0 as x→∞.

9. The function y = y(x) is defined implicitly by the equation sinx+ cos(ln(y)) + y2x = 1. Determine
dy
dx at the point x = 0, y = 1.

Solution. Differentiate to get

cosx + (− sin ln y)
y′

y
+ 2yy′x + y2 = 0.

Plug in x = 0, y = 1 to get
1 = 0.
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Actually the question has a “bug”... basically to avoid 1 = 0 means that y′ must be infinite (i.e.
vertical slope) at x = 0. Here is Maple implicit plot of this relationship that shows that this is
indeed the case:

10. You are given a function f(x) that satisfies

d

dx
f(x) =

1

x3 + 1
, f(1) = 2.

Let g be the inverse of f ; that is, f(g(x)) = x. Determine g(2) and g′(2).

Solution. g(2) = 1; and differentiating we obtain

g′(x)

g3(x) + 1
= 1

so that g′(2) = g3(2) + 1 = 2.

11. The hyperbolic trigonomentric functions are defined as:

coshx =
ex + e−x

2
; sinhx =

ex − e−x

2
; tanhx =

sinhx

coshx

(a) Verify the following identities:

d

dx
coshx = sinhx;

d

dx
sinhx = coshx;

cosh2 x− sinh2 x = 1.

sinh(x + y) = sinhx cosh y + sinh y coshx

(b) Derive an addition formula for cosh(x + y) which is similar to the addition formula for cos .

(c) Sketch the graphs of sinhx, coshx and tanhx. Indicate any odd or even symmetry.

Solution. Here, we show addition identities. They are easy to show directly from the defi-
nition. Alternatively, note that f(x) = sinh(x + y) solves the ODE f ′′ = f subject to initial
conditions f(0) = sinh(y) and f ′(0) = cosh(y). More generally, the solution to f ′′ = f can be
written as f(x) = A cosh(x) + B sinh(x), where A = f(0), B = f ′(0). Taking f(0) = sinh(y)
and f ′(0) = cosh(y) (and using the fact the solution corresponding to given initial conditions
is unique) yields the identity

sinh(x + y) = sinh(y) cosh(x) + cosh(y) sinh(x).

Similar argument shows that

cosh(x + y) = cosh(y) cosh(x) + sinh(y) sinh(x).
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