MATH 1500, Homework 14

Due date: Wed, 17 February

- 1. Consider $I = \int_0^1 \sqrt{1 + x^2} dx$.
 - (a) Estimate I using the Trapezoid rule with n = 4 subintervals.
 - (b) Estimate I using the Simpson's rule with n = 4 subintervals.
 - (c) How many subintervals n are needed to estimate I with Midpoint rule to within 10⁻⁵? Note that $|I M_n| \leq \frac{Mh^2(b-a)}{24}$ where $M \geq \max_{[a,b]} |f''(x)|$ and $h = \frac{b-a}{n}$.
 - (d) Use Romberg integration to compute I numerically to within 10^{-5} (Use enough iterations until you see that the answer doesnt change anymore in the first 5 digits).
- 2. Consider $I = \int_0^1 4\sqrt{1 x^2} dx$.
 - (a) Verify that $I = \pi$.
 - (b) Evaluate I numerically using the midpoint rule M_n with n = 1, 2, 4. Then compute the error $E_n = \pi M_n$. Note: you may use $\pi = 3.141592654$.
 - (c) Repeat part (b) but using Simpson's rule.
 - (d) From class, we know that Midpoint rule has $O(h^2)$ error whereas Simpson's rule has $O(h^4)$ error if the integrand is sufficiently smooth. Is this the case for this integral? Why not? Use computations of parts (b) and (c) in support of your answer.
 - (e) Rewrite the integral I by making a substitution $\sqrt{1-x} = t$. Then apply Simpson's rule with n = 2 and n = 4. Comment on the error behaviour. Why is it better than part (c)?
 - (f) [Bonus] Use Romberg integration and part (e) verify the first 10 digits of π . How many subintervals did you need?
- 3. The goal of this question is to estimate the error for the Midpoint rule.
 - (a) Consider $\int_{x_0}^{x_1} f(x) dx$ with $x_1 = x_0 + h$; and where f has a bounded second derivative. Recall the Taylor remainder theorem with N = 1 states that

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(\xi) \text{ where } \xi = \xi(x) \in [a, x].$$

Apply this expansion with $a = x_0 + h/2$ to estimate $\int_{x_0}^{x_1} f(x) dx - hf(x_0 + h/2)$.

- (b) Prove the error formula for the midpoint rule: if M_n is the midpoint rule with n = (b-a)/h subintervals, then $\left|\int_a^b f(x) M_n\right| \le \frac{M}{24}(b-a)h^2$ where $M \ge \max_{[a,b]} |f''(x)|$.
- 4. [Bonus] Show that the error in using the right-point rule for $\int_0^1 x^{-1/2}$ is of the order $O(h^{1/2})$.