MATH 1500, Homework 7

Due date: 11 November (Wednesday)

- 1. On the same graph, sketch the functions $e^x, e^{2x}, e^{-x}, e^{-2x}$.
- 2. For each of the functions below, find their derivatives. Then sketch their graphs. Indicate (if any) roots, max/min and behaviour at endpoints or infinities.
 - (a) $f(x) = x \exp(-x), -\infty < x < \infty$
 - (b) $f(x) = e^{-(x^2)}, -\infty < x < \infty$
 - (c) $f(x) = x \ln(x), \quad 0 < x < \infty$ (make sure to indicate $\lim_{x \to 0^+} f(x)$ as well as behaviour at $+\infty$)
 - (d) $f(x) = x^{(1/x)}$, $0 < x < \infty$ (make sure to indicate $\lim_{x \to 0^+} f(x)$ as well as behaviour at $+\infty$)
 - (a) The function y = y(x) is defined implicitly by the equation $x^2y + x \tan(y) \pi/4 = 1$. Determine $\frac{dy}{dx}$ at the point $x = 1, y = \pi/4$.
 - (b) You are given a function f(x) that satisfies

$$\frac{d}{dx}[f(x)] = \frac{1}{x^3 + 1}, \quad f(1) = 2.$$

Let g be the inverse of f; that is, f(g(x)) = x. Determine g(2) and g'(2).

3. The hyperbolic trigonomentric functions are defined as:

$$\cosh x = \frac{e^x + e^{-x}}{2}; \quad \sinh x = \frac{e^x - e^{-x}}{2}; \quad \tanh x = \frac{\sinh x}{\cosh x}$$

(a) Verify the following identities:

$$\frac{d}{dx}\cosh x = \sinh x; \quad \frac{d}{dx}\sinh x = \cosh x;$$
$$\cosh^2 x - \sinh^2 x = 1.$$
$$\sinh(x+y) = \sinh x \cosh y + \sinh y \cosh x$$

- (b) Derive an addition formula for $\cosh(x+y)$ which is similar to the addition formula for \cos .
- (c) Sketch the graphs of $\sinh x$, $\cosh x$ and $\tanh x$. Indicate any odd or even symmetry.
- 4. Recall from class that the solution to the differential equation

$$\frac{dy}{dt} = F(y)$$

is given implicitly by

$$\int \frac{dy}{F(y)} = \int dt + C$$

The goal of this question is to derive the solution to the logistic equation,

$$\frac{dy}{dt} = y\left(1 - y\right).\tag{1}$$

(a) Determine constants A, B such that

$$\frac{1}{y(1-y)} = \frac{A}{y} + \frac{B}{y-1}.$$

- (b) Find $\int \frac{1}{y(1-y)} dy$. Hint: use part (a).
- (c) Solve (1). If y(0) = 1/2, find y(1). [Double-check that y(1) = 0.731; but you are asked to find it explicitly in terms of "e".]
- 5. A marble rolls along a straight line in such a manner that its velocity is directly proportional to the distance it has *yet* to roll. If the total distance it rolls is 5 meters, and after 1 second it has rolled 2 meters, express the distance it has rolled as a function of time. How long will it take for the marble to roll 4 meters?
- 6. Newton's law of cooling states the rate of change of temperature of a small object is proportional to the the difference between its temperature and that of the surrounding environment. That is,

$$\frac{dT}{dt} = k\left(T - T_e\right)$$

where T and T_e is the is the temperature of the object and T_e is the temperature of the surrounding environment. Apply Newton's law to answer the following question.

- (a) When a cup of tea is made, its temperature is initially 90°. A minute later, its temperature has cooled to 70°. If the temperature outside is 20°, how long will it take for the temperature of the cup to reach 30°?
- 7. (a) Sketch the graph of $f(\theta) = \tan(\theta)$.
 - (b) Make an appropriate restriction on the domain of $\tan \theta$ and define $\arctan x$. What is the domain and range of $\arctan x$?
 - (c) Sketch the graph of $\arctan x$ and show that

$$\frac{d}{dx}\arctan x = \frac{1}{1+x^2}.$$

8. [BONUS] A roll of toilet paper is placed on the floor against the wall. A crayon is fixed at the centre of the roll. As the roll is being unrolled, the crayon leaves a trace on the wall. What is the shape of the curve drawn by the crayon?

⁽d) What is $\arctan(1)$?