Homework 5

- 1. (a) Find the tangent plane approximation to the function $f(x,y) = x^3y y^2 + 5$ at the point (x,y) = (1,1). (b) Approximate f(1.2,0.9) using linear approximation you found in part (a).
- 2. 3Suppose that u(x, y) = F(x 2y) + G(x + 2y).
 - (a) Compute u_x, u_y
 - (b) Compute u_{xx}, u_{yy}
 - (c) Find the value of k such that $u_{xx} = ku_{yy}$.
- 3. The wind-chill index is modeled by the function

$$W = 13 + 0.6T - 11v^{0.15} + 0.4Tv^{0.15}$$

where T is the temperature and v is the wind speed. When $T = -15^{\circ}$ C and v = 30 km/h, by how much would you expect the apparent temperature to drop if (a) the actual temperature decreases by 2° C? (b) the wind speed increases by 2° Km/h?

- 4. You are given a function with the property that $f_x(x,y) = 2x + ayx^2$ and $f_y = x^3 + 1$. Determine the constant a. Hint: use equality of mixed partial derivatives.
- 5. Given a surface defined implicitly through

$$x^2 - y^2 + z^2 + xy^3z = 2.$$

- (a) Determine $\partial z/\partial x$ at the point (x, y, z) = (1, 1, 1).
- (b) Determine $\partial z/\partial y$ at the point (x, y, z) = (1, 1, 1).
- (c) Determine the equation of the plane tanget to this surface at the point (x, y, z) = (1, 1, 1).
- 6. The wave heights h in the open sea depend on the speed v of the wind and the length of time t that the wind has been blowing at that speed. Values of the function h = h(v, t) are recorded in feet in the following table.

Duration (hours)

Wind speed (knots)	v t	5	10	15	20	30	40	50
	10	2	2	2	2	2	2	2
	15	4	4	5	5	5	5	5
	20	5	7	8	8	9	9	9
	30	9	13	16	17	18	19	19
	40	14	21	25	28	31	33	33
	50	19	29	36	40	45	48	50
	60	24	37	47	54	62	67	69

- (a) On the t-v plane, make a rough sketch of several well-chosen contours of h(v,t). Indicate the values of contours chosen. Hint: you can print out the table above and draw the contours directly on the table.
- (b) Estimate the values of $h_v(30, 20)$ and $h_t(30, 20)$. What is the practical interpretation of these values?
- (c) Using part (c) and linear approximation, estimate h(33, 25) as best as you can.
- 7. Let u(x,t) be the temperature of a metal bar at a one-dimensional location x and time t. Then u(x,t) satisfies the *heat equation* which has the following non-dimensional form:

$$u_t = u_{xx}$$

- (a) There is a solution of the Heat equation of form $u(x,t) = e^{-\lambda t} \sin(mx)$. Determine a relationship between λ and m.
- (b) Find all solutions of the heat equation that have the form $u(x,t) = F(t)\sin(mx)$ for some function F(t). Show that they are all some scalar multiple of the solution you found in part (a).
- (c) Can you find any other solutions of the heat equation that are *not* of the form $u(x,t) = F(t)\sin(mx)$?
- 8. The pressure, volume, and temperature of a mole of an ideal gas are related by the equation PV = 8.3T, where P is measured in kilopascals, V in liters, and T in kelvins. Use differentials to find the approximate change in the pressure if the volume increases from 10 L to 12 L and the temperature decreases from 310 K to 305 K.