
Homework 6

1. (a) Use chain rule to find the partial derivatives ∂z
∂u

and ∂z
∂v

of z = ex
2y,

where x(u, v) =
√
uv and y(u, v) = 1

v
.

(b) Express ∂z
∂u

and ∂z
∂v

only in terms of u and v and evaluate at (u, v) =
(1, 1).

Solution:

(a)

∂z

∂u
=
∂z

∂x

∂x

∂u
+
∂z

∂y

∂y

∂u
= (2xyex

2y)(
v

2
√
uv

)+(x2ex
2y)(0) = xyex

2y v√
uv

and

∂z

∂v
=
∂z

∂x

∂x

∂v
+
∂z

∂y

∂y

∂v
= (2xyex

2y)(
v

2
√
uv

)+(x2ex
2y)(− 1

v2
) = ex

2y(xy
u√
uv
−x2 1

v2
)

(b)
∂z

∂u
=
√
uv

1

v
euv

1
v
v√
uv

= eu

∂z

∂v
= euv

1
v (
√
uv

1

v

u√
uv
− uv 1

v2
) = eu(

u

v
− u

v
) = 0

So
∂z

∂u

∣∣
(u,v)=(1,1)

= e and
∂z

∂v

∣∣
(u,v)=(1,1)

= 0

2. (a) Find the directional derivative of f(x, y, z) = xy2z3 at P (2, 1, 1) in
the direction of Q(0,−3, 5).

(b) In which direction is the directional derivative maximized and how
much is it?

Solution:

(a) The unit vector in the direction of ~PQ = 〈0 − 2,−3 − 1, 5 − 1〉 =
〈−2,−4, 4〉 is

u =
1√

4 + 16 + 16
〈−2,−4, 4〉 =

1

6
〈−2,−4, 4〉.
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Also
Of = 〈y2z3, 2xyz3, 3xy2z2〉,

so Of(2, 1, 1) = 〈1, 4, 6〉. So the directional derivative isDuf(2, 1, 1) =
Of(2, 1, 1) · u = 〈1, 4, 6〉 · 1

6
〈−2,−4, 4〉 = 1

6
(−2− 16 + 24) = 1.

(b) The directional derivative is maximed in the direction of the gradi-
ent vector Of(2, 1, 1) = 〈1, 4, 6〉 and it is |Of(2, 1, 1)| = |〈1, 4, 6〉| =√

1 + 16 + 36 =
√

53.

3. Consider the surface xy + yz + zx = 5. Find (a) the tangent plane at
(1, 2, 1) and (b) the normal line at (1, 2, 1).
Solution:

(a) Consider F (x, y, z) = xy + yz + zx. Its gradient is OF (x, y, z) =
〈y + z, x + z, x + y〉, so OF (1, 2, 1) = 〈3, 2, 3〉, which is a normal
vector to the tangent plane at (1, 2, 1). So the tangent plane is
given by

3(x− 1) + 2(y − 2) + 3(z − 1) = 0

or 3x+ 2y + 3z = 10

(b) The normal line has direction 〈3, 2, 3〉, so it has the parametric
equations 

x = 1 + 3t

y = 2 + 2t

z = 1 + 3t

4. Find all critical points of the function

f(x, y) = x3 + y2 − 2xy + x− 2y.

Use the second derivative test to classify the critical points as either
min, max or a saddle point. If it is a min or max, is it a global min or
max?
Solution:
The first partial derivatives of the function are

fx(x, y) = 3x2 − 2y + 1 and fy(x, y) = 2y − 2x− 2,
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so in order to find the critical points we have to solve the following
system: {

3x2 − 2y + 1 = 0

2y − 2x− 2 = 0

From the second equation we take y = x + 1 and then from the first
we take

3x2 − 2(x+ 1) + 1 = 0 or

3x2 − 2x− 1 = 0

which gives solutions x = 1 and x = −1
3
. If x = 1 then y = 1 + 1 = 2

and if x = −1
3

then y = −1
3

+ 1 = 2
3
. So the two critical points are

(1, 2) and (−1
3
, 2
3
).

Now in order to apply the second derivative test we have

fxx(x, y) = 6x

fyy(x, y) = 2

fxy(x, y) = −2

D(x, y) = fxxfyy − (fxy)
2 = 12x− 4

and D(1, 2) = 8, D(−1
3
, 2
3
) = −8. Then:

The local minimum at (1, 2) is not global since f(1, 2) = −2 and we can
find values of f that are smaller than that, for example f(−2, 0) = −10.

5. Find dimensions of the box without a lid with volume 32cm3 that has
minimal surface area.
Solution:
Let x, y, z be the dimensions of the box. The surface area of the box
without the lid is f(x, y, z) = xy + 2xz + 2yz. We want the volume to
be 32cm3, i.e. xyz = 32, or z = 32

xy
. So the function that we want to

minimize is

f(x, y) = xy + 2x
32

xy
+ 2y

32

xy
= xy +

64

y
+

64

x
.
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Then we need to solve the system

fx = y − 64

x2
= 0

fy = x− 64

y2
= 0

from which we take x3 = 64 or x = 4 and y = 64
42

= 4. Plugging these
back in xyz = 32 we take z = 2. So the dimensions of the box are
(4, 4, 2).

6. Find the extreme values of f(x, y) = 2x2 + 3y2 − 4x− 5 on the region
x2 + y2 ≤ 16.
Solution:
To find the critical points we need to solve Of = 〈4x− 4, 6y〉 = 〈0, 0〉.
This gives x = 1 and y = 0 which lies in the interior of the given region,
x2 + y2 < 16.
On the boundary x2+y2 = 16 we have: Consider the function g(x, y) =
x2 + y2, which has gradient Og〈2x, 2y〉. Then we need to solve the
following system for all the values of x, y and λ:

4x− 4 = λ2x

6y = λ2y

x2 + y2 = 16

From 6y = λ2y we take that either y = 0 or λ = 3.
If y = 0 then x2 = 16 or x = ±4.
If λ = 3 then 4x − 4 = λ2x =⇒ x = −2 and (−2)2 + y2 = 16 =⇒
y2 = 12 =⇒ y = ±2

√
3. Now we calculate the values at all of the

above points:

f(1, 0) = −7

f(4, 0) = 11

f(−4, 0) = 45

f(−2, 2
√

3) = 47

f(−2,−2
√

3) = 47

So the maximum is 47 at either (−2, 2
√

3) or (−2,−2
√

3), and the
minimum is −7 at (1, 0).
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7. The total production of a certain product is modeled by the Cobb-
Douglas function P = 100L3/4K1/4, where L represents the units of
labor and K represents the units of capital. Each labor unit costs $200
and each capital unit costs $250. If the total expenses for labor and
capital cannot exceed $50, 000, find the maximum level of production.
Solution:
We want to maximize P (L,K) = 100L

3
4K

1
4 with the constrain of the

total cost to be 50, 000, i.e.

g(L,K) = 200L+ 250K = 50, 000.

We have

OP = 〈3
4

100L− 1
4K

1
4 ,

1

4
100L

3
4K− 3

4 〉 = 〈75L− 1
4K

1
4 , 25L

3
4K− 3

4 〉

and
λOg = 〈λ200, λ250〉.

We need to solve the system

75L− 1
4K

1
4 = λ200

25L
3
4K− 3

4 = λ250

200L+ 250K = 50, 000

Solving for λ the first two we have

λ =
75

200
(
K

L
)
1
4 and

λ =
1

10
(
L

K
)
3
4 ,

so setting them equal gives

75

20
(
K

L
)
1
4 = (

L

K
)
3
4 =⇒ 75

20
= (

L

K
)
3
4 (
L

K
)
1
4 =⇒ L

K
=

75

20
=⇒ L =

75

20
K.

Now from the third one

200
75

20
K + 250K = 50, 000 =⇒ K = 50

and L =
75

20
50 = 187.5.

So the production in this case is P (50, 187.5) = 13, 478.22.
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8. Use Lagrance multipliers to prove that the triangle with maximum area
that has a given perimeter p is equilateral.
Hint: Use Heron’s formula for the area

A =
√
s(s− x)(s− y)(s− z)

where s = p
2
and x, y, z are the lengths of the sides.

Solution:
Let f(x, y, z) = s(s − x)(s − y)(s − z) and g(x, y, z) = x + y + z for
the perimeter of the triangle. Then we want to maximize f with the
constrain x+ y + z = p. We have

Of = 〈−s(s− y)(s− z),−s(s− x)(s− z),−s(s− x)(s− y)〉

λOg = 〈λ, λ, λ〉

So we want to solve the system

−s(s− y)(s− z) = λ

−s(s− x)(s− z) = λ

−s(s− x)(s− y) = λ.

Or, by eliminating λ, the system

(s− y)(s− z) = (s− x)(s− z)

(s− x)(s− z) = (s− x)(s− y).

The latter gives x = y and y = z, so x = y = z = p
3
, which means that

the triangle is equilateral.

9. The plane 2x + 2y + z = 2 intersects the surface z = x2 + y2. Use
Lagrance multipliers to:

(a) Find the point of intersection of these two surfaces which is closest
to the z-axis.

(b) Find the point of intersection which is furthest away from the
z-axis.

Solution:
We want ot minimize and maximize the distance from the z-axis which
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is
√
x2 + y2. Instead, we will minimize/maximize its square f(x, y, z) =

x2 + y2. The constrains are

g(x, y, z) = 2x+ 2y + z = 2 and

h(x, y, z) = x2 + y2 − z = 0.

Then

Of = 〈2x, 2y, 0〉
λOg = 〈2λ, 2λ, λ〉

µOh = 〈2µx, 2µy,−µ〉

So we need to solve the following system:

Of = λOg + µOh

2x+ 2y + z = 2

x2 + y2 − z = 0.

From the first one we have
2x = 2λ+ 2µx

2y = 2λ+ 2µy

λ = µ

=⇒

{
x = λ(1 + x)

y = λ(1 + y)
=⇒ x

1 + x
=

y

1 + y
=⇒ x = y

Now from the last two we take z = 2 − 4x and z = 2x2, and by
eliminating z we take x = −1 ±

√
2. So finally we have two solutions

(−1−
√

2,−1−
√

2, 6 + 4
√

2) and (−1 +
√

2,−1 +
√

2, 6− 4
√

2). Then

f(−1−
√

2,−1−
√

2, 6 + 4
√

2) = 2(1 +
√

2)2 and

f(−1 +
√

2,−1 +
√

2, 6− 4
√

2) = 2(1−
√

2)2

which shows that the first point is the maximum of the f and the last
one is the minimum.
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