Math 2001 Midterm

- 1. Consider a curve whose equation in polar coordinates is $r = e^{-\theta}$ with $0 < \theta < 2\pi$.
 - (a) [2 points] Sketch this curve.
 - (b) [2 points] Compute the equation of the line tangent to this curve at $\theta = 0$.
 - (c) [2 points] Find all values of θ for which this curve has a vertical tangent.
- 2. [3 points] Determine the equation of the plane that passes through the origin and is perpendicular to the planes x + z = 2001 and y + z + 2017 = 0.
- 3. (a) [2 points] Sketch the graph of a curve 4x² y² + 4y 5 = 0. What kind of a curve is it?
 (b) [3 points] Sketch the graph of a surface x² + y² = z² 1. What kind of a surface is it?
- 4. Consider a space curve $\vec{r}(t) = (t, t^2, 2t)$.
 - (a) [2 points] Compute the curvature of this curve at t = 0.
 - (b) [2 points] Compute T, N and B at t = 0.

(c) [2 points] Suppose that an airplane follows the curve \vec{r} and passes through (0, 0, 0) with a constant speed of 1. Determine its velocity and its acceleration.