MATH 2400, Homework 1

Due date: 20 September (Tuesday)

- 1. Install either Maple, Octave, matlab on your computer.
- 2. Using a computer program of your choice, plot the functions $y = x, y = x^2$ and $y = \sqrt{x}$ on the same graph, with $x \in [0, 2]$ and with $y \in [0, 2]$. Hand in the printout of your graph. Note: If using maple, the commands "display" and "plot" will be useful; if using matlab/octave, the commands "hold on" and "plot" will be useful. See help pages or google around.
- 3. Consider the iteration $x_0 = 1.0$, $x_1 = \frac{1}{1+x_0}$, $x_2 = \frac{1}{1+x_1}$, ...
 - (a) Using a computer program, compute $x_1, x_2, \ldots x_{20}$. Hand in the printout.
 - (b) Determine the limit of this iteration, $x_{\infty} = \lim_{n \to \infty} x_n$. [I'm looking for exact expression that you can derive by hand, not the numerical value you get from the computer! Hint: x_{∞} satisfies $x_{\infty} = \frac{1}{1+x_{\infty}}$]
 - (c) Using a computer, output the difference $x_n x_\infty$ for $n = 1 \dots 20$. Hand in the printout.
 - (d) Based on the numerical results from part (c), make a guess about how close is x_{1000} to x_{∞} ?
- 4. Ever wondered how computers perform division? One way is to use Newton's method. The idea is that the root of $f(x) = a \frac{1}{x}$ is precisely 1/a.
 - (a) Apply Newton's method to $f(x) = a \frac{1}{x}$ to come up with an algorithm that allows you to find 1/a using only multiplication and addition/substraction.
 - (b) Illustrate your algorithm to compute $\frac{1}{7}$. Use $x_0 = 0.1$ as your starting point. How many iterations were required to get 8 digits? How many multiplication and addition operations? Make a printout of your iterations.
 - (c) What happens if you use $x_0 = 1$ as your starting point for part (b)?
- 5. This question reviews the Taylor series.
 - (a) Write down the first three non-zero terms of the Taylor series of $\ln(1+h)$ centered at h=0.
 - (b) Using part (a), estimate $\ln(0.5)$ without using computers.
 - (c) The Taylor Remainder theorem states that

$$f(a+h) = \sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!} h^n + \frac{f^{(N+1)}(\xi)}{(N+1)!} h^{N+1}$$
(1)

where ξ is some number between a and a + h. Write out what this means for the case a = 1, $f(a + h) = \ln(1 + h)$; N = 3.

(d) Using the Taylor Remainder theorem, estimate the error between the actual value of $\ln(0.5)$ and the value you got in part (b).