Supplemental questions for midterm

- 1.
- (a) Can the bisection method be used to find the zero of the polynomial $y = (x 2)^2$?
- (b) Set up Newton's method to determine the point x and the number m for which the line y = mx intersects the curve $y = \cos(x)$ tangentially: that is y = mx is tangent to $y = \cos(x)$ at the point of intersection x.
- 2. We have the following information about a function f(x).
 - f(1) = 2
 - The first order divided difference $f[x_1, x_2] = 2$ for all values $x_1 \neq x_2$.

What can you say about this function?

- 3. Given a function f(x), set up the Newton's method iteration in order to find fixed points of f(x), which satisfy x = f(x).
- 4. The function f(x) is tabulated below.

- (a) Make a table of divided differences and write down the Newton interpolating polynomial $P_2(x)$ for f(x).
- (b) Suppose it is known that |f'''(x)| < 2. Estimate the error $|P_2(0.5) f(x)|$.
- (c) Use Trapezoid rule to estimate $\int_0^2 f(x) dx$. Estimate the maximum error given that |f'''(x)| < 2. Remark: if T_n is the Trapezoid rule with n subintervals, then $\left|T_n - \int_a^b f(x) dx\right| \le \max |f''(x)| \frac{h^2(b-a)}{12}$.
- 5. Someone has given you a subroutine for approximating the solution of an initial value problem. You don't know the order of the method, so you run the code on a problem with a known solution for two values of h and get the following errors:

$$\begin{array}{ccc} h & |error| \\ 0.01 & 1.2 \times 10^{-5} \\ 0.005 & 1.51 \times 10^{-6} \end{array}$$

You conclude the order of the method is $O(h^p)$ where p is what integer?

6.

- (a) Construct the polynomial of degree 2, P(x), which interpolates the data $\{(0,1), (0.5, 1.649), (1, 2.718)\}.$
- (b) Given that the data comes from the function $y = e^x$, bound the truncation error $|P(0.25) e^{0.25}|$.
- (c) What points should we choose for interpolation if we wish to minimize the error bound for 0 < x < 1?

7.

- (a) Find the Lagrange polynomial interpolating $y(x_0)$, $y(x_0 + \frac{h}{3})$ and $y(x_0 + h)$. Include the error term.
- (b) Use the above Polynomial to find an approximation to $y'(x_0)$ using the values at $x = x_0, x_0 + \frac{h}{3}, x_0 + h$. Also estimate the error term.

8. You have a numerical method N(h) which has O(h) error. Applying N(h) for three different values of h you get the following behaviour:

$$\begin{array}{ccccccc} h & 0.2 & 0.1 & 0.05 \\ N(h) & 1.6 & 1.4 & 1.3 \end{array}$$

Use Richardson extrapolation to get the best possible estimate you can for N(0).

9. Given that f(x) is sufficiently smooth, find the bound for the error $E = \left| \int_{-1}^{1} f(x) dx - M \right|$ where M = f(1) + f(-1).

10.

- (a) It is known that $g(x) = \frac{1}{x^2+1} 2x + \exp(\sin(x)) \cos(\exp(x))$. Find a constant M such that |g(x)| < M on the interval [-1, 2].
- (b) Let T_n be the Trapezoid rule approximation to $I = \int_{-1}^2 f(x) dx$. Suppose that f''(x) = g(x) where g is as in part (a). How large should you choose n to guarantee that $\left|\int_{-1}^2 f(x) T_n\right| \le 10^{-3}$? Remark: it is known that $\left|\int_a^b f(x) T_n\right| \le \frac{M}{24}(b-a)h^2$ where M is a constant such that $|f''(x)| \le M$ for all $x \in [a, b]$.
- 11. Use two point Gaussian quadrature to approximate,

$$\int_0^1 \cos(x^2) \, dx$$

You may use the table below. You do not need to simplify your answer.

Dointa	Weighting	Function
Fontes	weighting	FUNCTION
	Factors	Arguments
2	c1 = 1.000000000	x1 = -0.577350269
	c2 = 1.000000000	x2 = 0.577350269
3	c1 = 0.55555556	x1 = -0.774596669
	c2 = 0.888888889	x2 = 0.000000000
	c3 = 0.55555556	x3 = 0.774596669
4	c1 = 0.347854845	x1 = -0.861136312
	c2 = 0.652145155	x2 = -0.339981044
	c3 = 0.652145155	x3 = 0.339981044
	c4 = 0.347854845	x4 = 0.861136312