MATH 2400 Midterm

No calculators or other aids. Write all answers in the booklet provided.

- 1. Set up Newton's method to determine $\sqrt[3]{2}$. Starting with $x_0 = 1$, compute x_1 .
- 2. The function f(x) is tabulated below.

- (a) Suppose that f(x) is a quadratic. What is it?
- (b) Suppose that f(x) is some function such that $|f^{(3)}(x)| < 5$ for all x. Find some numbers a and b such that $a \le f(0.5) \le b$.
- 3. Let f(x) be as tabulated in question 2.
 - (a) Estimate $\int_0^2 x f(x) dx$ using the Trapezoid rule.
 - (b) Suppose that it is known that $|f'(x)| \leq \left|x \frac{2}{x^2+1}\right|$ and $|f''(x)| \leq \left|1 + \frac{4x}{(x^2+1)^2}\right|$. Estimate the error you made in part (a). Remark: if T_n is the Trapezoid rule with n subintervals, then $\left|T_n \int_a^b f(x)dx\right| \leq \max |f''(x)| \frac{h^2(b-a)}{12}$.
 - (c) Use Romberg integration to estimate $\int_0^2 x f(x) dx$ as accurately as you can.
- 4. Let $I(h) = \int_{-h}^{h} f(x) dx$ and let $N = f(-\frac{h}{2}) + f(\frac{h}{2})$, where f is a smooth function. Show that $|N I| \le M h^p$ for some positive constants p and M. What is the value of the constants p and M?