

(a) Evaluate

$$\int_0^{2\pi} \frac{d\theta}{\left(2 - \sin\theta\right)^2}.$$

(b) Evaluate

$$\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} dx.$$

(a) Determine the image of the unit disk |z| < 1 under the map

$$w = \frac{i+z}{i-z}.$$

(b) Determine the image of the unit disk |z| < 1 under the map

$$w = \frac{i}{2} \ln \left(\frac{i+z}{i-z} \right).$$

- 3. Solve $\Delta T=0$ inside the region which consists of all of $\mathbb C$ minus two circles centered at ± 2 and having radius 1. Assume that $T = T_1$ on the boundary of the circle centered at -2 and $T = T_2$ on the boundary of the circle centered at +2. Sketch contour plot of your solution.
- 4. Solve $\Delta T = 0$ inside the the region D which consists of the positive half of the unit circle, $D = \{z : z \in \Delta T = 0 \}$ |z|<1 and Re(z)>0. The boundary conditions are: $T=T_0$ for $z=e^{i\theta}, \theta\in(-\pi,\pi)$; $T=T_1$ for $z = iy, y \in (0,1)$; $T = T_2$ for $z = iy, y \in (-1,0)$; as shown on the blackboard.
- · Do q.6 from HW5
 - [sinx dx = ??
 - $\int_{0}^{\infty} \frac{\cos x}{x^{2}+1} = \frac{7}{2}$
 - $\int_{0}^{\infty} \frac{\log x}{(1+x^2)^2} dx = ?$

Note: One of these questions will appear H. midterm.

 $\int \frac{x^3}{x^2 + 4x + 8} dx = ?$