Midterm

1. Use contour integration to evaluate the following integrals.

(a)
$$\int_0^{2\pi} \frac{1}{2 + \cos x} dx$$
 (b) $\int_0^\infty \frac{x^p}{1 + x^2}, \quad 0 \le p \le 1.$

2. Solve $\Delta T = 0$ inside the region which consists of all \mathbb{C} minus two circles centered at ± 2 and having radius 1. Assume $T = T_1$ on the boundary of the left circle and $T = T_2$ on the boundary of the right circle. Sketch contour plot of your solution.

3.

- (a) Find numbers R and r such that all 4 roots of the polynomial $x^4 + x + 1 = 0$ lie inside the region r < |z| < R.
- (b) BONUS: Find a number R such that all n roots of the polynomial $x^n + x^n a_{n-1} + \ldots + a_0 = 0$ lie inside the region |z| < R.

4.

- (a) For the domain as shown on the blackboard, determine the derivative f'(z) of a conformal map f(z) which maps the upper half-plane into this domain. Sketch the corresponding steamlines.
- (b) Using part (a), find f(z) which streamlines the domain as shown. Also indicate the coordinates of the points as shown in the blackboard. Sketch the corresponding streamlines.