Due: Thurs, Nov 6

1.

1) What is the optimal location for organic farm?
a) Consider the problem

$$\lambda q = q'' + q(x)q$$
, $p'(o) = o = q'(L)$ (Q1)
where $q(x) = \{L, x \in (a, a+l) \\ l-1, x \in [0, L] \setminus (a, a+l) \}$
Show that λ is minimized when $a = \frac{L-l}{2}$,
i.e., when the organic form is located in the
middle of the interval.
b) Given $g_1 = i \prod_{l=1}^{l} g_l = i \prod_{l=1}^{l} \frac{1}{2} \prod_{l=1}^{l} \frac{1}{2$

2. Consider the eigenvalue problem

$$\Delta u + \lambda u = 0, \text{ inside } B_1(0) \subset \mathbb{R}^2$$

$$\partial_n u = 0, \text{ on } \partial B_1(0) \qquad (1)$$

$$u = 0, \text{ on } \partial B_{\varepsilon}(\xi)$$

Here, ε is assumed small and $B_{\varepsilon}(\xi) \subset B_1(0)$.

- (a) First, suppose that $\xi = 0$ so that the problem is radially symmetric. In this case, find an implicit expression for λ in terms of Bessel J_0 and Y_0 functions. See Wikipedia or ask me if you need more info on Bessel functions.
- (b) Using the following expansions for Bessel J_0 and Y_0 functions of small arguments,

$$J_0(z) \sim \frac{2}{\pi} \ln(z) + \frac{2}{\pi} (\gamma - \ln 2) \text{ as } z \to 0,$$

$$Y_0(z) \sim 1 + O(z^2) \text{ as } z \to 0,$$

where $\gamma = 0.577...$ is the Euler constant, find the asymptotic formula for λ in the limit $\varepsilon \to 0$.

- (c) Use Maple to compute λ as determined by (a). Hint: the command fsolve will be useful here: for example fsolve(x²=2,x=1.4); uses fsolve to solve for √2, the second argument provides an initial guess. Then compare with the asymptotic formula for λ that you obtained in part (b). Do this for two values, ε = 0.1 and ε = 0.05. Comment on what you observe for the error behaviour.
- (d) Now do the case of general ξ in (1). Here are some steps:
 - Expand $\lambda = \delta \lambda_0 + \delta^2 \lambda_1 + \dots$, and $u(x) = u_0 + \delta u_1(x) + \dots$, where $\delta := \frac{1}{\log(1/\varepsilon)} \ll 1$ and u_0 is constant.
 - You will find that $u_1 \sim AG(x, \xi)$ where A is some constant that you will need to determine and G is the same Neumann's Green's function that we saw in class.
 - Determine λ_0 . Make sure to double-check that where you got agrees with part (b) when $\xi = 0$. How does the answer depend on ξ ?
 - BONUS: Determine λ_1 . Then compare with what you got in part (b).