

MATH 5230/4230, Homework 6

Due: Thurs, Nov 25

1. The Van der Pol oscillator is governed by the ODE

$$u_{tt} + \varepsilon u_t (u^2 - 1) + u = 0. \quad (1)$$

(a) Using the method of multiple scales, show that the leading order expansion is of the form

$$u = A(\varepsilon t) \cos(t + \Phi(\varepsilon t))$$

and find the equations for A and Φ .

(b) Solve for A and Φ subject to initial conditions $u(0) = 1$, $u_t(0) = 0$.
(c) Use a computer to plot a numerical solution to (1) for $\varepsilon = 0.1$, $t \in (0, 100)$. On the same graph, plot the solution you found in part b and the envelope $A(\varepsilon t)$. Comment on what you observe. Note: If using maple, see sample code on the course webpage.

2. Perform multiple scales analysis on the ODE

$$u_{tt} + u = \varepsilon u' (u' - u); \quad u(0) = 1, \quad u'(0) = 0.$$

Sketch the solution and its envelope with $\varepsilon = 0.15$ and with $t = 0 \dots 2000$. What happens to the solution as $t \rightarrow \infty$?

3. A model of a laser subject to opto-electronic feedback is described by the following system [Erneux]:

$$x' = -y - \eta(1 + y(s - \theta)); \quad y' = (1 + y)x. \quad (2)$$

The parameters η and θ represent feedback parameter and delay time, respectively.

(a) Linearize around the steady state $x = 0$, $y = -\eta/(1 + \eta)$. What is the transcendental equation for the resulting eigenvalue λ ?
(b) Seek Hopf bifurcations, i.e. plug in $\lambda = i\omega$, then separate real and imaginary parts. Show that Hopf bifurcations occur when

$$\sin(\omega\theta) = 0 \quad \text{or} \quad (1 + \eta)\omega^2 = 1 + \eta \cos(\omega\theta). \quad (3)$$

(c) Equations (3) represent curves in the (η, θ) plane. Plot these curves. Analytically classify any intersection points that you may observe. The first such point occurs when $\theta = 2\pi$, $\eta = 3/5$. What are the possible values of ω at this point? List at least three more such intersections.
(d) [BONUS] These intersection points are called double-hopf points and very interesting dynamics can be observed near these points. Perform numerical experiments of (2) with θ near 2π , and with η near $3/5$. Play around with η and θ near these values and describe what you observe. Hand in any useful plots of numerics.