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Abstract. We develop a high order asymptotic expansion for the mean first passage time (MFPT) of the capture of
Brownian particles by a small elliptical trap in a bounded two dimensional region. This new result describes the effect that
trap orientation plays on the capture rate and extends existing results that give information only on the role of trap position
on the capture rate. Our results are validated against numerical simulations which confirm the accuracy of the asymptotic
approximation. In the case of the unit disk domain, we identify a bifurcation such that the high order correction to the global

MFPT (GMFPT) is minimized when the trap is orientated in the radial direction for traps centered at 0 < r < rc :=
√

2−
√
2.

When centered at position rc < r < 1, the GMFPT correction is minimized by orientating the trap in the angular direction.
In the scenario of a general two-dimensional geometry, we identify the orientation that minimizes the GMFPT in terms of the
regular part of the Neumann Green’s function. This theory is demonstrated on several regular domains such as disks, ellipses
and rectangles.
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1. Introduction. We consider the problem of describing the mean first passage time (MFPT) of two
dimensional Brownian motion in a bounded region to a small elliptical absorbing trap. The diffusive transport
of molecules and individual agents from a source to a mobile or fixed target is a problem occurring in a variety
of physical, biological and social systems [16, 34, 39]. Ecological examples include the time required for an
animal to find a mate or shelter [11, 25, 40]. At the cellular scale, diffusion transports key cargoes within
the cell [8, 12, 13, 15, 26], including fibroblasts to initiate wound healing [1], antigens for detection by T-cell
receptors [35, 36], and material to and from the nucleus [28, 42]. The scope of the target search problem has
also been expanded to include features such as stochastic switching of target states, resetting [6], extreme
statistics, and homogenization [38]. For an extensive review, we point the reader to the recent survey [14].

The MFPT u(x) describing the expected time to capture a diffusing particle initially at x ∈ Ω \ Ωε solves
the Poisson equation [5, 16]

D∆u+ 1 = 0, x ∈ Ω \ Ωε;(1.1a)

D∇u · n̂ = 0, x ∈ ∂Ω;(1.1b)

u = 0, x ∈ ∂Ωε.(1.1c)

The boundary conditions (1.1b) prescribe that the outer boundary ∂Ω is reflecting and equation (1.1c)
specifies that the trap Ωε is absorbing. The aim of this paper is to construct a solution to (1.1) in the limit
as ε → 0 in the presence of an elliptical trap defined as

(1.2) Ωε = ξ + εeiϕA, A =
{
(y1, y2) ∈ R2 | y

2
1

a2
+

y22
b2

< 1
}
.

Here εa and εb are the semi-major and semi-minor axes respectively and ϕ is the angle of orientation with
respect to the horizontal axis (see Fig. 1). The term eiϕ corresponds to rotation by angle ϕ in the counter
clockwise direction. An important quantity, called the global MFPT (GMFPT), describes the overall capture
rate based on a uniform distribution of start locations, and is defined as

(1.3) τ =
1

|Ω \ Ωε|

∫
Ω\Ωε

u(x) dx.

Before outlining the rationale for this work and relationship to previous studies, we state our main result:
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Fig. 1. Schematic of the configuration of the domain Ω with a single trap Ωε as defined in (1.3). The trap is centered at
ξ ∈ Ω and has semi-major and semi-minor axes εa and εb respectively. The semi-major axis of the trap is orientated at angle
ϕ with respect to the horizontal axis.

Principal Result: Consider equation (1.1) with a single elliptical trap centered at ξ ∈ Ω with semi-major
and semi-minor axes εa and εb respectively (a > b) and the semi-major axis having elevation ϕ from the
horizontal. In the limit as ε → 0+, a two term expansion of the solution to (1.1) and the GMFPT (1.3) is
of form

(1.4a) u(x) =
1

D

[
u0(x) + ε2u2(x) +O(ε4)

]
; τ =

1

D

[
τ0 + ε2τ2 +O(ε4)

]
.

The terms in the above expansions are given explicitly as

u0(x) = −|Ω|
[
G(x; ξ)−R(ξ; ξ)

]
+

|Ω|
2πν

;(1.4b)

u2(x) = |Ω|
[1
2
Trace

(
Q∇2

ξG(x; ξ)
)
− 2π∇ξR(ξ; ξ) · M∇ξG(x; ξ)

]
+ χ2.(1.4c)

The logarithmic gauge function is ν(ε) = −1/ log(εdc) where dc is the logarithmic capacitance which reflects
the shape of the trap and is determined by (B.81). For an elliptical trap, dc =

1
2 (a+ b). The constant χ2 is

given by

(1.4d) χ2 = −|Ω|
(
Trace

(
Q∇2

ξR(ξ; ξ)
)
− 2π∇ξR(ξ; ξ) · M∇ξR(ξ; ξ)

)
+

a2 + b2

8
.

Here Q and M are the quadrupole and moment polarization matrices and solve associated electrified disk
problems (B.81) and (B.84), respectively. For the case of an elliptical trap, they are given explicitly by

(1.4e) Q = −a2 − b2

4

[
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

]
, M = − (a+ b)2

4
I +Q.

The terms of the GMFPT (1.4a) are given by

τ0 =
|Ω|
2π

[1
ν
+ 2πR(ξ; ξ)

]
, ν(ε) =

−1

log(εdc)
;(1.4f)

τ2 =
[πab
|Ω|

τ0 +
a2 + b2

8
+ χ2

]
.(1.4g)

In the above result G(x; ξ) and R(x; ξ) are the Neumann Green’s function and its regular part respectively,
defined as the unique solution of

∆G =
1

|Ω|
− δ(x− ξ), x ∈ Ω; ∇G · n̂ = 0, x ∈ ∂Ω;(1.5a) ∫

Ω

G(x; ξ)dx = 0; G(x; ξ) = − 1

2π
log |x− ξ|+R(x; ξ).(1.5b)
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Before giving a detailed outline of the steps leading to the principal result, we review some recent work on
related problems and motivations for this study. Over the past several decades there has been extensive
research in the asymptotic analysis of the two-dimensional Poisson problem (1.2) in the presence of small
inhomogeneities [7, 17–19, 22, 25, 41] which serves as a canonical problem in the trafficking and delivery of
small signaling molecules and cargoes [5]. More generally, there has been significant recent interest in the
study of elliptic problems in punctured domains [9, 21, 24, 31–33].

Elliptical traps are of particular interest in cellular signaling problems due to the frequent observation of
non-circularity in the cell itself [20] or other key organelles, such as the nucleus [27, 42]. An oval or elliptical
geometry accurately captures the aberrations to radial symmetry observed in these domains and hence it is
natural to investigate how the capture rate of Brownian particles is modulated by non-circularity. This is
one element in a broader mathematical effort to understand the contribution of geometry in cellular signaling
[3, 4, 20, 29, 37]

The leading order behavior of the GMFPT (1.4f) as ε → 0 (see [25]) captures the effects of trap size and
position. However, there is no information on how the orientation of the trap influences the solution. A
correction to the leading order behavior (1.4b) was derived in [30] that captures the effect of orientation,

(1.6) τ =
1

D

[
τ0 − ε|Ω|

(
d · ∇ξR(ξ; ξ)

)
+O(ε2)

]
.

In the result (1.6), the vector d, is related to the dipole moment of the trap and is defined by associated
problems that incorporate the shape and orientation of the trap. The contribution to the MFPT from the
location of the trap in Ω is captured by the quantity ∇ξR(ξ; ξ) where the subscript reflects differentiation
with respect to the source location.

For application of (1.6) to the case of an elliptical trap, which has two lines of symmetry, we find (see
Appendix B.1) that the dipole term vanishes (d=0), thus (1.6) no longer describes the effect of orientation
on the MFPT. Our refined result (1.4) describes the higher order contribution to the MFPT due to the trap
orientation. In particular, we can identify optimizing configurations by writing the GMFPT as

(1.7) τ =
τ0
D

+
ε2

D

[
πab

|Ω|
τ0 +

a2 + b2

4
− π|Ω| (a+ b)2

2
(R2

ξ1 +R2
ξ2) + |Ω|a

2 − b2

4
p ·

[
cos 2ϕ
sin 2ϕ

]]
.

The vector p is found to be

(1.8) p =

[
Rξ1ξ1 −Rξ2ξ2 − 2π(R2

ξ1
−R2

ξ2
)

2Rξ1ξ2 − 4πRξ1Rξ2

]
,

which gives the direction along which the trap should be orientated to optimize the correction term τ2 of the
GMFPT. We note from (1.4f), that when the trap center ξ is placed at a critical point of R(ξ; ξ), so that
∇ξR(ξ; ξ) = [Rξ1 , Rξ2 ]

T = [0, 0]T , the optimal orientation vector reduces to p = [Rξ1ξ1 −Rξ2ξ2 , 2Rξ1ξ2 ]
T .

The outline of the paper is as follows. In Sec. 2 we present a hierarchy of results, beginning with the solution
of (1.1) in the reduced case of a circular trap located at the center of a disk (Sec. 2.1). Following this, we
derive the solution in the presence of an elliptical trap placed at the center of a disk (Sec. 2.2). Finally,
we present the corresponding result for the case of a general domain with an ellipse of arbitrary orientation
(Sec. 2.3) which yields the principal result (1.4).

In Sec. 3 we first validate the asymptotic result on the unit disk domain where the regular part R(x; ξ) is

known in closed form. In this unit disk case, we identify a bifurcation where for |ξ| > rc :=
√
2−

√
2, the

GMFPT correction term τ2 is minimized when the semi-major axis is orientated in the angular direction.
Conversely, for |ξ| < rc, the GMFPT correction τ2 is minimized when the semi-major axis is orientated in the
radial direction. For certain regular domains, such as rectangles and ellipses, highly accurate series solutions
for (1.5) are available, which allows us to determine p. For these cases we reveal similar bifurcations of the
optimizing orientation depending on the centering point of the ellipse ξ and proximity to ∂Ω. Finally in
Sec. 4, we discuss avenues for future research arising from this study.
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2. Asymptotic analysis of the mean first passage time to a single elliptical trap. In this
section we perform the main asymptotic analysis on the MFPT problem (1.1). To guide the rationale for
the higher order expansions, it is useful to first analyze two exactly solvable cases for a circular trap located
at the center of a disk and an elliptical trap located at the center of a disk.

2.1. Unit disk with a circular trap at the origin. For a single circular trap at the origin, the
MFPT (1.1) reduces to the ODE

(2.9a) urr +
1

r
ur = − 1

D
, ε < r < 1; u(ε) = u′(1) = 0,

where r = |x|. The exact solution of (2.9a) is

(2.9b) u(r) =
1

2D

[
−r2

2
+ log

r

ε
+

ε2

2

]
.

The corresponding GMFPT

τ =
1

|Ω \ Ωε|

∫
Ω\Ωε

u dx =
2π

π(1− ε2)

∫ 1

r=ε
u(r)rdr =

1

8D(1− ε2)

[
− 3 + 4ε2 − ε4 − 4 log ε

]
=

1

8D

[
− 3− 4 log ε+ ε2(1− 4 log ε) +O(ε4)

]
.(2.9c)

The equation (2.9c) will be a useful case to validate solutions of (1.1) for more general configurations.

2.2. Unit disk with an elliptical trap at the origin. We now solve for the MFPT in the scenario of
an elliptical trap at the origin, orientated along the horizontal axis (ϕ = 0) with semi-major and semi-minor
axes εa and εb respectively.

Outer Expansion We expand as

(2.10) u(r) =
1

D

[
u0(r) + ε2u2(r, θ) + · · ·

]
where ∆u0 + 1 = 0 with u′

0(1) = 0 and ∆u2 = 0 with u′
2(1) = 0. The general solutions for u0 and u2 in

polar coordinates x = reiθ are

u0 =
1

2
log r − r2

4
+A1(2.11a)

u2 = B2 cos 2θ(r
2 + r−2) +B1,(2.11b)

for constants A1, B1, B2 to be determined. We remark that in (2.11b), the general solution can accommodate
a term of form sin 2θ×{r2, r−2} in the case that the trap orientation moves off the perpendicular axis. Moving
to a coordinate x = εy, we find that

u ∼ 1

2
log |y|+ 1

2
log ε+A1 +B2

cos 2θ

|y|2
+ ε2

[
B1 −

y2

4

]
+O(ε4).

Inner Expansion: In the region x = εy, the solution u(x) = U(y) is expanded as

U(y) =
1

D

[
U0(y) + ε2U2(y) + · · ·

]
.

O(ε0) : The leading order problem satisfies

∆yU0 = 0, in R2 \ A; U0 = 0 on ∂A;(2.12a)

U0 =
1

2
log |y|+ 1

2
log ε+A1 +B2

cos 2θ

|y|2
+ · · · , |y| → ∞.(2.12b)
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where A is the rescaled ellipse of semi-major and semi-minor axes a and b respectively with orientation ϕ = 0
with respect to the origin. Using the solution v0c(y) of the electrified disk problem derived in appendix B.1,
we calculate that

(2.12c) U0 =
1

2
v0c(y) ∼

1

2

[
log |y| − logα− a2 − b2

4

cos 2θ

|y|2
+ · · ·

]
, |y| → ∞,

where α = (a+ b)/2. Matching (2.12b) with (2.12c) yields that

(2.13) A1 =
1

2ν
, B2 = −a2 − b2

8
, ν =

−1

log εα
.

O(ε2) : Proceeding to the next order, we have that

∆yU2 = −1, in R2 \ A; U2 = 0 on ∂A;(2.14a)

U2 = B1 −
|y|2

4
+ O(1), |y| → ∞.(2.14b)

We solve this problem in appendix B.3 by decomposing the solution as U2 = − 1
4 |y|

2 + U2h where U2h(y)
solves a homogeneous problem. We find (see (B.91)) that the large argument behavior of (2.14) is

(2.15) U2 ∼ −|y|2

4
+

a2 + b2

8
+O(|y|−2), |y| → ∞.

Hence from comparison to (2.14b), we determine that

B1 =
a2 + b2

8
.

We remark that the term B11 in (B.91) is determined by the Hessian of the leading outer solution U0 which
vanishes in this case due to the trap being centered at the origin. This completes the derivation of the
expansion (2.10) and yields the following expression for the MFPT

(2.16) u(r, θ) =
1

2D

[
log r − r2

2
+

1

ν
+

ε2

4

(
(a2 + b2)− (a2 − b2)

(
r2 + r−2

)
cos 2θ

)]
+ · · ·

as ε → 0. We remark that this expression reduces to the exact solution (2.9b) in the scenario a = b = 1.
Calculating the GMFPT, we must identify local and global contributions by introducing an intermediate
scale ε ≪ δ ≪ 1.

τ =
1

|Ω \ Ωε|

∫
Ω\Ωε

u dx =
1

π(1− ε2ab)

[ ∫
|x|<δ

udx︸ ︷︷ ︸
I1

+

∫
δ<|x|<1

udx︸ ︷︷ ︸
I2

]
.

We proceed to calculate both terms I1 and I2 to arrive at a final expression independent of δ.

Calculation of I1: Rescaling with x = εy, we have that

(2.17) I1 = ε2
∫
y∈R2\A
|y|<δ/ε

U dy =
ε2

D

∫ |z|=δ/ε

|z|=1

( U0︸︷︷︸
I10

+ε2 U1︸︷︷︸
I12

)|J |dz.

In the above calculation of the integral I1, the region exterior to the ellipse has been mapped to the exterior
of the disk through the transformation y → αz+ β/z for z = reiθ and Jacobian |J | given by

|J | =

∣∣∣∣∣α− β
r2 cos 2θ − β

r2 sin 2θ
β
r2 sin 2θ α− β

r2 cos 2θ

∣∣∣∣∣ = α2 − 2αβ

r2
cos 2θ +

β2

r4
.
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Using the fact that U0(z) =
1
2 log |z|, we have that

I10 ≈ ε2

2

∫ 2π

θ=0

∫ r= δ
εα

r=1

log r
(
α2 − 2αβ

r2
cos 2θ +

β2

r4

)
rdrdθ = ε2π

∫ r= δ
εα

r=1

log r
(
α2r +

β2

r3

)
dr

≈ π

4

[
ε2(α2 + β2) + 2δ2 log

δ

εα
− δ2

]
.(2.18)

The contribution from I12 is O(ε4). We now calculate the contribution from the outer solution.

Calculation of I2:

I2 =
1

D

∫
|x|>δ

(u0 + ε2u2)dx

=
1

2D

∫ 2π

θ=0

∫ 1

r=δ

[
log r − r2

2
+

1

ν
+

ε2

4

(
(a2 + b2)− (a2 − b2)(r2 + r−2) cos 2θ

)]
rdrdθ

=
π

D

∫ 1

r=δ

[
log r − r2

2
+

1

ν
+

ε2

4

(
a2 + b2

)]
rdr

≈ π

4D

[
−3

2
+

2

ν
+

ε2

2

(
a2 + b2

)
− 2δ2 log δ + δ2 − 2δ2

ν

]
(2.19)

Combining these two terms, we have that

τ =
1

πD(1− ε2ab)

π

8

[
−3 +

4

ν
+ ε2(a2 + b2) + 2ε2(α2 + β2)

]
=

1

8D

[
−3 +

4

ν
+ ε2

(
2(a2 + b2)− 3ab+

4ab

ν

)]
+O(ε4).(2.20)

As required, this expression is independent of δ and substitution of a = b = 1 reduces (2.20) to (2.9c).

2.3. General case for a single trap. We will now determine the solution to the MFPT problem for
a single elliptical domain, centered at x = ξ with semi-major and semi-minor axes εa, εb, respectively and
orientation ϕ with respect to the horizontal axis. The explicit form of the trap is given in (1.2).

In an outer region away form the elliptical trap, we expand the solution as

u(x) =
1

D

[
u0(x) + εu1(x) + ε2u2(x) + O(ε2)

]
.

The outer problems uj for j = 0, 1, 2, . . . satisfy

∆uj + δ1j = 0, x ∈ Ω \ {ξ};(2.21a)

∇uj · n̂ = 0, x ∈ ∂Ω.(2.21b)

The local behavior as x → ξ is now established for each problem (2.21) through boundary layer analysis. In
the vicinity of the trap, the solution is expanded in variables

(2.22) U =
1

D

[
U0(y) + εU1(y) + ε2U2(y) + O(ε2)

]
, y = e−iϕ x− ξ

ε
.

Collecting terms at relevant orders gives a sequence of problems to be solved.

Inner Region O(ε0): The leading order problem for U0 satisfies

∆U0 = 0, y ∈ R2 \ A;(2.23a)

U0 = 0, y ∈ ∂A.(2.23b)
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In terms of the solution v0c of the electrified disk problem obtained in Appendix B.1, we have that

(2.24) U0(y) = Sνv0c(y), ν =
−1

log εα
.

Here S is a constant to be determined in the matching process. The far field of equation (2.24) supplies the
appropriate local behavior for the outer solution. In (B.81), we establish that for an elliptical trap aligned
in the horizontal direction (ϕ = 0), the far field behavior is

(2.25) v0c(y) = log |y| − logα+
yT Q̃y

|y|4
, Q̃ = −αβ

[
1 0
0 −1

]
= −a2 − b2

4

[
1 0
0 −1

]
.

Hence, in terms of the outer coordinate y = ε−1e−iϕ(x− ξ) incorporating rotation by ϕ with respect to the
horizontal, and incorporating the far field behavior for |y| → ∞, we generate the local behavior as x → ξ

(2.26) u ∼ Sν

[
log |x− ξ|+ 1

ν
+ ε2

(x− ξ)TQ(x− ξ)

|x− ξ|4

]
+ · · · .

The matrix Q = eiϕQ̃e−iϕ is calculated as

(2.27) Q = −a2 − b2

4

[
cosϕ − sinϕ
sinϕ cosϕ

] [
1 0
0 −1

] [
cosϕ sinϕ

− sinϕ cosϕ

]
= −a2 − b2

4

[
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

]
.

This behavior is used to furnish terms in the outer expansion.

Outer Region O(ε0): The problem at leading order is

∆u0 + 1 = 0, x ∈ Ω \ {ξ};(2.28a)

∇u0 · n̂ = 0, x ∈ ∂Ω;(2.28b)

u0 ∼ Sν log |x− ξ|+ S + · · · , x → ξ.(2.28c)

In terms of the Neumann’s Green’s function (1.5), we have that

(2.29) u0 = −2πSνG(x; ξ) + τ0.

where τ0 is a constant. The expansion of u0 as x → ξ gives the local behavior

u0 = Sν[log |x− ξ| − 2πR(x; ξ)] + τ0

∼ Sν log |x− ξ|+ τ0 − 2πSν
[
R(ξ; ξ) + a · (x− ξ) + (x− ξ)T∇2

xR |x=ξ (x− ξ) +O(|x− ξ|3)
]
,(2.30)

where the coefficient terms for x = (x1, x2) are given by

(2.31) a :=

[
∂x1R(x; ξ)
∂x2R(x; ξ)

]
x=ξ

, ∇2
xR |x=ξ=

1

2

[
∂x1x1

R(x; ξ) ∂x1x2
R(x; ξ)

∂x1x2R(x; ξ) ∂x2x2R(x; ξ)

]
x=ξ

=
1

2

[
R11 R12

R12 R22

]
.

A system of two equations for unknowns (S, τ0) is found by both matching (2.29) with the local behavior,
and integrating (2.28a). This yields that

(2.32) S =
|Ω|
2πν

, τ0 =
|Ω|
2πν

[
1 + 2πνR(ξ; ξ)

]
.

This result was established in [22]. We now determine the correction to the inner expansion. In the local
variable y = ε−1e−iϕ(x− ξ), equation (2.30) yields the far field behavior

(2.33) U(y) ∼ Sν
[
log |y| − logα− 2πεa · eiϕy − 2πε2 yT e−iϕ∇2

xR |x=ξ eiϕy + · · ·
]
, |y| → ∞.
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This reveals the leading order matching behavior for the higher order inner corrections. Specifically, we have
that

U1(y) ∼ −2πSνa · eiϕy + · · ·(2.34a)

U2(y) ∼ −2πSνyT e−iϕ∇2
xR |x=ξ eiϕy + · · ·(2.34b)

as |y| → ∞. This behavior is now matched to corresponding inner problems.

Inner Region O(ε1): At this order we must solve the exterior problem

∆yU1 = 0 , y ∈ R2 \ A; U1 = 0, y ∈ ∂A;(2.35a)

U1 = −2πSνa · eiϕy + · · · , |y| → ∞;(2.35b)

In appendix B.2, we introduce and solve the vector valued electrified disk problem v1c

∆yv1c = 0 , y ∈ R2 \ A; v1c = 0, y ∈ ∂A;(2.36a)

v1c = y +
M̃y

|y|2
+ · · · |y| → ∞; M̃ = −α

(
a 0
0 b

)
.(2.36b)

In terms of this solution, we write that

(2.37) U1 = −2πSν a · eiϕv1c(y).

Applying the far field behavior (2.36b) as |y| → ∞, while returning to outer coordinates with variable
y = ε−1e−iϕ(x− ξ), we generate the local behavior

(2.38a) U1 ∼ −2πSν

ε
a ·

[
(x− ξ) + ε2

M(x− ξ)

|x− ξ|2

]
+ · · · , as x → ξ,

In the case of an elliptical trap, we calculate explicitly that M = eiϕM̃e−iϕ has the form

M = −α

[
cosϕ − sinϕ
sinϕ cosϕ

] [
a 0
0 b

] [
cosϕ sinϕ

− sinϕ cosϕ

]
= −α

[
a cos2 ϕ+ b sin2 ϕ (a− b) sinϕ cosϕ
(a− b) sinϕ cosϕ b cos2 ϕ+ a sin2 ϕ

]
= −α2

[
1 0
0 1

]
− αβ

[
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

]
= −α2I +Q;(2.38b)

where Q is the quadrupole matrix derived in (2.27).

Inner Region O(ε2): At O(ε2) we introduce the scalar valued problem U2(y) where

∆yU2 = −1, y ∈ R2 \ A; U2 = 0, y ∈ ∂A;(2.39a)

U2 = −2πSν yT e−iϕ∇2
xR |x=ξ eiϕy + · · · |y| → ∞;(2.39b)

To further decompose the far field behavior (2.39b), we write

H = e−iϕ∇2
xR |x=ξ eiϕ

=
1

2

[
cosϕ sinϕ

− sinϕ cosϕ

] [
R11 R12

R12 R22

] [
cosϕ − sinϕ
sinϕ cosϕ

]
=

R11 +R22

4

[
1 0
0 1

]
+

1

4

[
(R11 −R22) cos 2ϕ+ 2R12 sin 2ϕ 2R12 cos 2ϕ− (R11 −R22) sin 2ϕ
2R12 cos 2ϕ− (R11 −R22) sin 2ϕ −(R11 −R22) cos 2ϕ− 2R12 sin 2ϕ

]
=

R11 +R22

4

[
1 0
0 1

]
+

[
B11 B12

B12 −B11

]
.

8



Here B is the matrix satisfying Trace(B) = 0 with components

B11 =
1

4

[
(R11 −R22) cos 2ϕ+ 2R12 sin 2ϕ

]
,(2.40a)

B12 =
1

4

[
2R12 cos 2ϕ− (R11 −R22) sin 2ϕ

]
.(2.40b)

The far field behavior is now in the form

(2.41) yTHy =

[
(R11 +R22)

y21 + y22
4

+ B11(y
2
1 − y22) + 2B12 y1y2

]
.

We remark that ∆u0 = ∆(Sν log |x− ξ| − 2πSνR(x; ξ) + τ0) = −1 which implies that

(2.42) ∆R = R11 +R22 =
1

|Ω|
.

After applying these reductions, together with 2πSν = |Ω| from (2.32), we can restate equation (2.39) as

∆yU2 = −1, y ∈ R2 \ A; U2 = 0, y ∈ ∂A;(2.43a)

U2 ∼ −|y|2

4
− 2πSν yTBy + · · · , |y| → ∞.(2.43b)

In Appendix B.3, we state and solve the canonical problem (2.43) and obtain the refined behavior

(2.44a) U2 ∼ −|y|2

4
− 2πSνyTBy + d2c +O(|y|−2), as |y| → ∞,

where the constant term is

(2.44b) d2c =
α2 + β2

4
+ 4πSναβ B11.

If we incorporate the value of B11 shown in (2.40a), this term reduces to

(2.45) d2c =
α2 + β2

4
− πSνTrace

(
Q∇2

xR(ξ; ξ)
)
,

where we have used the identity

Trace
(
Q∇2

xR(ξ; ξ)
)
= Q11(R11 −R22) + 2Q12R12; Q =

[
Q11 Q12

Q12 −Q11

]
= −αβ

[
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

]
.

This completes the solution of the inner expansion (2.22) the inner problem up to O(ε2). A combination of
equations (2.26), (2.38) and (2.44) yields the local behavior

u ∼ Sν log |x− ξ|+ S

+ ε2
(
Sν

[
(x− ξ)TQ(x− ξ)

|x− ξ|4
− 2π a · M(x− ξ)

|x− ξ|2

]
+ d2c

)
as x → ξ.(2.46)

We now return to the outer expansion.

Outer region O(ε1): At this order the problem is given by

∆u1 = 0, x ∈ Ω \ {ξ};(2.47a)

∇u1 · n̂ = 0, x ∈ ∂Ω;(2.47b)

u1 ∼ 0, x → ξ.(2.47c)
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The unique solution of (2.47) is u1 ≡ 0.

Outer region O(ε2): At this order we have that

∆u2 = 0, x ∈ Ω \ {ξ};(2.48a)

∇u2 · n̂ = 0, x ∈ ∂Ω;(2.48b)

u2 ∼ Sν

[
(x− ξ)TQ(x− ξ)

|x− ξ|4
− 2πa · M(x− ξ)

|x− ξ|2

]
+ d2c + · · · , x → ξ.(2.48c)

To express the solution of (2.48) in terms of the Green’s function, we first notice by direct calculation that

∇ξ log |x− ξ| = − x− ξ

|x− ξ|2
,(2.49a)

−1

2
Trace

(
Q∇2

ξ log |x− ξ|
)
=

(x− ξ)TQ(x− ξ)

|x− ξ|4
, Q =

[
Q11 Q12

Q12 −Q11

]
.(2.49b)

The solution of (2.48) can then be written as

(2.50) u2(x) = Sν
[
πTrace

(
Q∇2

ξG(x; ξ)
)
− 4π2a · M∇ξG(x; ξ)

]
+ χ2,

where χ2 is a constant to be determined. In the formulation (2.50), the derivatives with respect to the source
location y = (y1, y2) are

∇ξ =

[
∂ξ1

∂ξ2

]
, ∇2

ξ =

[
∂2
ξ1ξ1

∂2
ξ1ξ2

∂2
ξ2ξ1

∂2
ξ2ξ2

]
.

This in particular leads to the identity

(2.51) Trace
(
Q∇2

ξG(x;y)
)
= Q11(Gy1y1

−Gy2y2
) + 2Q12Gy1y2

.

To complete the matching, we evaluate (2.50) as x → ξ. Since a = ∇xR(ξ; ξ) = ∇ξR(ξ; ξ), we calculate

u2 ∼ χ2 + Sν

[
(x− ξ)TQ(x− ξ)

|x− ξ|4
− 2πa · M(x− ξ)

|x− ξ|2
+ πTrace

(
Q∇2

yR(ξ; ξ)
)
− 4π2a · Ma

]
, x → ξ.

Matching with (2.48c), we have that

χ2 = −Sν
(
πTrace

(
Q∇2

yR(ξ; ξ)
)
− 4π2a · Ma

)
+ d2c.

In the case particular to the elliptical trap, we apply (2.38b) so that M = −α2I + Q. In addition, we
apply the value of d2c given in (2.45), together with the symmetry relationship ∇2

xR(ξ; ξ) = ∇2
ξR(ξ; ξ), and

Sν = |Ω|/2π from (2.32) to further reduce χ2 to

χ2 = −Sν
(
2πTrace

(
Q∇2

ξR(ξ; ξ)
)
+ 4π2α2|a|2 − 4π2a · Qa

)
+

a2 + b2

8

= −|Ω|
(
Trace

(
Q∇2

ξR(ξ; ξ)
)
+ 2πα2|a|2 − 2πa · Qa

)
+

a2 + b2

8
(2.52)

In summary, the solution of (1.1) admits the expansion u = 1
D [u0 + ε2u2 + · · · ] where the terms are

u0(x; ξ) = −|Ω|
[
G(x; ξ)−R(ξ; ξ)

]
+

|Ω|
2πν

,(2.53a)

u2(x; ξ) = |Ω|
[1
2
Trace

(
Q∇2

ξG(x; ξ)
)
− 2πa · M∇ξG(x; ξ)

]
+ χ2.(2.53b)

where χ2 is the constant given in (2.52).
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2.4. Calculation of the global MFPT. In this section we calculate the GMFPT defined as

τ =
1

|Ω \ Ωε|

∫
Ω\Ωε

u dx =
1

D|Ω \ Ωε|

∫
Ω\Ωε

u0 + ε2u2 dx.

The challenge as before is to determine the correct expansion accurate to O(ε2) by accounting for contribu-
tions from the inner expansion. We first decompose the region of integration Ω \Ωε := (Ω \Bδ)∪ (Bδ \Ωε)
for the disk Bδ = {x ∈ R2 | |x− ξ| < δ} and then apply the limit δ → 0. The integral becomes∫

Ω\Ωε
u dx =

∫
Bδ\Ωε

u dx︸ ︷︷ ︸
I1

+

∫
Ω\Bδ

u dx︸ ︷︷ ︸
I2

.

The integral I1 is evaluated by first transforming to the coordinate y = e−iϕ(x−ξ)/ε followed by y = αz+β/z
to find that

(2.54) I1 = ε2
∫
y∈R2\A
|y|<δ/ε

U dy =
ε2

D

∫ |z|=δ/ε

|z|=1

( U0︸︷︷︸
I10

+ εU1︸︷︷︸
I11

+ ε2U2︸︷︷︸
I12

+ · · · )|J |dz.

From equation (2.24), we have that U0(z) = Sν log |z| so that for z = reiθ,

I10 = Sνε2
∫ 2π

θ=0

∫ δ
εα

r=1

log r

[
α2 − 2αβ

r2
cos 2θ +

β2

r4

]
rdrdθ = 2πSνε2

∫ r= δ
αε

r=1

log r

[
α2r +

β2

r3

]
dr

= 2πSνε2
[
α2

(r2
2

log r − r2

4

)
− β2

(1 + 2 log r

4r2

)]r= δ
εα

r=1
≈ Sνπ

2

[
2δ2 log

δ

εα
− δ2 + ε2(α2 + β2)

]
.(2.55)

Following on to the term I11, we apply from (2.37) that U1 = −2πSνa · e−iϕv1c where v1c(z) = (z− z/|z|2).
This leads to I11 = ε3

∫ |z|=δ/ε
|z|=1

U1|J |dz = 0. The contribution from I22 = O(ε4).

The contribution from the outer region is now

(2.56) I2 =

∫
Ω\Bδ

u dx =
1

D

∫
Ω\Bδ

u0 dx︸ ︷︷ ︸
I20

+
ε2

D

∫
Ω\Bδ

u2 dx︸ ︷︷ ︸
I22

.

The first term is calculated with u0 = −2πSνG(x; ξ) + τ0 with τ0 = S(1 + 2πνR(ξ; ξ)) to determine

I20 =

∫
Ω\Bδ

u0 dx =

∫
Ω

u0 dx−
∫
Bδ

u0 dx

= |Ω|τ0 −
∫
Bδ

[Sν log |x− ξ|+ S] dx− 2πSν

∫
Bδ

(R(x; ξ)−R(ξ; ξ)) dx

= |Ω|τ0 − Sνπδ2
(
log δ − 1

2

)
− Sπδ2 +O(δ4).(2.57)

Following on to the second term in (2.56), we calculate that

I22 =

∫
Ω\Bδ

u2 dx =

∫
Ω

u2 dx−
∫
Bδ

u2 dx.

From (2.48b), the contributions of the second term have vanishing average, hence∫
Bδ

u2 dx = πδ2
(a2 + b2)

8
.
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Combining (2.55) and (2.57), we have that∫
Ω\Ωε

u0 + ε2u2 dx = |Ω|τ0 + ε2
(Sνπ

2
(α2 + β2) +

∫
Ω

u2 dx
)
+O(ε3),

= |Ω|τ0 + ε2|Ω|
(a2 + b2

8
+ χ2 +

∫
Ω

1

2
Trace

(
Q∇2

ξG(x; ξ)
)
− 2πa · M∇ξG(x; ξ)dx

)
+O(ε3).(2.58)

Applying the identity (2.51), we note that the integral terms in (2.58) vanish since

(2.59)

∫
Ω

(Gξ1ξ1 −Gξ2ξ2)dx = 0,

∫
Ω

Gξ1ξ2dx = 0,

∫
Ω

Gξ1dx = 0,

∫
Ω

Gξ2dx = 0.

Hence we obtain the final expression which incorporates the local and global contributions to the GMFPT,

(2.60)

∫
Ω\Ωε

u0 + ε2u2 dx = |Ω|τ0 + ε2|Ω|
(a2 + b2

8
+ χ2

)
.

Recalling the value of χ2 given in (2.52), equation (2.58) then reduces to
(2.61)∫

Ω\Ωε
u0 + ε2u2 dx = |Ω|τ0 + ε2|Ω|

(
a2 + b2

4
− |Ω|

(
Trace

(
Q∇2

ξR(ξ; ξ)
)
+ π

(a+ b)2

2
|a|2 − 2πa · Qa

))
.

Finally, using |Ω \ Ωε| = |Ω| − πε2ab, we have that

τ =
1

D|Ω \ Ωε|

∫
Ω\Ωε

u0 + ε2u2dx =
1

D|Ω|

[
1 + ε2

πab

|Ω|

] ∫
Ω\Ωε

u0 + ε2u2 dx

=
τ0
D

+
ε2

D

(
πab

|Ω|
τ0 +

a2 + b2

4
− |Ω|

(
Trace

(
Q∇2

ξR(ξ; ξ)
)
+ π

(a+ b)2

2
|a|2 − 2πa · Qa

))
.(2.62)

3. Results. In this section, we demonstrate the validity of the expansion and investigate how trap
orientation modulates the GMFPT. In terms of minimizing the GMFPT, we remark that trap location is
felt in the leading order through the term R(ξ; ξ). Hence, when considering the role of orientation, we
primarily focus on the correction terms u2(x) and τ2. A globally optimizing configuration of the GMFPT
would first locate the trap at the critical points of τ0 followed by choosing the orientation that optimizes τ2.

Example 3.1. Convergence in the disk geometry with a single elliptical trap.

In this case where the enclosing geometry Ω is the unit disk, we have exact formula for the Green’s function
and we can obtain the necessary derivatives. From the equations (A.73), we calculate that

a = ∇ξR(ξ; ξ) =
1

2π

2− |ξ|2

1− |ξ|2
ξ; Trace

(
Q∇2

ξR(ξ; ξ)
)
=

1

π

ξ · Qξ

(1− |ξ|2)2
; a · Qa =

1

4π2

(2− |ξ|2)2

(1− |ξ|2)2
ξ · Qξ;

Sν =
|Ω|
2π

=
1

2
; τ0 =

|Ω|
2πν

[
1 + 2πνR(ξ; ξ)

]
=

1

2

[1
ν
− log(1− |ξ|2) + |ξ|2 − 3

4

]
.(3.63)

Applying (3) to (2.62) together with |Ω| = π and D = 1, yields the GMFPT

τ = τ0 + ε2

[
abτ0 +

a2 + b2

4
− (a+ b)2

8

(
2− |ξ|2

1− |ξ|2

)2

|ξ|2 − 2− (2− |ξ|2)2

2(1− |ξ|2)2
ξ · Qξ

]

= τ0 + ε2

[
abτ0 +

a2 + b2

4
− (a+ b)2

8

(
2− |ξ|2

1− |ξ|2

)2

|ξ|2 + a2 − b2

4

2− (2− |ξ|2)2

2(1− |ξ|2)2

[
ξ21 − ξ22
2ξ1ξ2

]
·
[
cos 2ϕ
sin 2ϕ

]]
.

(3.64)

In Fig. 2, we show agreement between finite element solutions of (1.1) and the asymptotic result (3.64).
The common variables in this validation are the disk geometry, the trap center ξ = (0.3, 0.4) and the
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(a) Variation in u2(x) = ε−2(u(x)− u0(x)) with ϕ. (b) Variation in τ2 = ε−2(τ − τ0) with ϕ.

(c) Convergence of u(x). (d) Convergence of τ .

Fig. 2. Convergence of the asymptotic approximation (1.4) in the disk case with a trap centered at ξ = (0.3, 0.4). Panel
(a): Agreement between the solution correction u2(x) = ε−2(u(x) − u0(x)) for x = (−0.2,−0.4). Panel (b): The GMFPT
correction τ2 = ε−2(τ − τ0) from numerical and asymptotic approximations for ε = 0.03 as orientation ϕ varies. Panels (c-d):
Convergence as ε → 0 of the relative errors between numerical and asymptotic approximations (leading and correction) of u(x)
for x = (−0.2,−0.4) (c), and τ with fixed ϕ = π/6 (d). Straight lines are of slope 2 (blue) and 4 (red) indicating convergence
rates. Domain schematic shown in Fig. 3(a).

semi-axes dimensions (a, b) = (3, 1). In Figs. 2(a)-2(b) we show agreement of the correction terms u2 =
(u(x) − u0(x))/ε

2 at the point x = (−0.2,−0.4) and τ2 = (τ − τ0)/ε
2 as the trap orientation ϕ varies with

ε = 0.03 fixed. A schematic of the domain is shown in Fig. 3(a).

To directly confirm the convergence of the asymptotic expansion, we calculate a sequence of relative errors

(3.65) Erel[z] =
∣∣∣∣zapprox(ε)− ztrue

ztrue

∣∣∣∣ .
at a range of ε values. In (3.65) the true value is calculated from finite element simulations of (1.1) and
the approximate values come from taking one or two terms in the expansion (1.4a). In Figs. 2(c)-2(d), we
show that the rate of convergence in Erel as ε → 0+ is in agreement with the principal result (1.4), and in
particular, the two term approximation (3.64) of the GMFPT has error O(ε4).

Example 3.2. Optimization of trap orientation for the GMFPT in the unit disk domain.
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To study the optimizing trap orientations, we set ξ = reiθ in (3.64) which reduces the GMFPT to
(3.66)

τ ∼ τ0 + ε2

[
abτ0 +

a2 + b2

4
− (a+ b)2

8
r2

(
2− r2

1− r2

)2

+
a2 − b2

4
g(r) cos 2(θ − ϕ)

]
, g(r) =

2− (2− r2)2

2(1− r2)2
r2.

(a) MFPT u(x) with elliptical trap at ξ = (0.3, 0.4). (b) Orientations that minimize the GMFPT correction τ2.

Fig. 3. Minimization of the GMFPT correction in the disk with a single elliptical trap. Panel (a): Domain with a
single elliptical trap at ξ = (0.3, 0.4), axes ε(a, b) = ε(3, 1) and orientation ϕ = π/6. The highlighted point (black dot) is
x = (−0.2,−0.4). Panel (b): The function g(r) and the critical radius r = rc. For r < rc, the GMFPT correction is minimized
when the ellipse has major axis pointed towards the center of the disk.

The function g(r) has the following (see Fig. 3(b)) simple properties,

g(r) → 0−, as r → 0+; g(r) → +∞, as r → 1−; g(rc) = 0, rc =

√
2−

√
2,

and hence we can conclude that the correction τ2 of the GMFPT is minimized when the semi-major axis
of the trap is aligned in the radial direction, i.e. ϕ = θ, provided g(r) < 0 or (2 − r2)2 > 2. The GMFPT
minimizing configuration is therefore

(3.67) ϕ =

{
θ, r ∈ (0, rc),

θ + π
2 , r ∈ (rc, 1);

rc =

√
2−

√
2 ≈ 0.7654.

In Fig. 3(b), we plot the function g(r) together with corresponding trap orientations that minimize the
GMFPT. We also remark that the trap center which minimizes the leading order term τ0 in GMFPT is
ξ = (0, 0). For a trap centered at this location, there is no contribution (g(0) = 0) to the GMFPT from the
trap orientation as expected by symmetry considerations.

Example 3.3. The MFPT from the origin to an elliptical trap in a disk.

In this example, we calculate the MFPT for a particle in the disk domain initially at x = 0 to arrive at an
elliptical trap centered at ξ = reiθ. From the main result (1.4c), we have the correction term

u2(x; ξ) = |Ω|
[1
2
Trace

(
Q∇2

ξG(x; ξ)
)
− 2π∇ξR(ξ; ξ) · M∇ξG(x; ξ)

]
+ χ2,

which describes the role that trap orientation plays in the capture rate. In Appendix A.1, we calculate the
relevant terms to be

Trace(Q∇2
ξG(0; ξ)) =

1

π

ξ · Qξ

|ξ|4
;(3.68a)

∇ξR(ξ; ξ) · M∇ξG(0; ξ) = − 1

4π2

2− |ξ|2

|ξ|2

[
ξ · Qξ − (a+ b)2

4
|ξ|2

]
.(3.68b)
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We then have that

(3.68c) u2(0) =
a2 + b2

8
− (a+ b)2

8

(2− r2)

(1− r2)2
+

a2 − b2

8

2r4 − 1

r2(1− r2)2
cos

(
2(ϕ− θ)

)
.

Favorable agreement between this result and numerical simulations is shown in Fig. 4. We conclude that u2(0)

is minimized by orientating the trap in the radial direction (θ = ϕ) for 2r4 − 1 < 0 or 0 < r < 2−
1
4 ≈ 0.8409.

For 2−
1
4 < r < 1, u2(0) is minimized by orientating the semi-major axis of the trap parallel to the boundary.

Fig. 4. The effects of trap orientation on the MFPT staring at the center of a disk. The correction u2 = ε−2(u − u0)
from (3.68c) with a single trap of extent ε = 0.01, semi-major axes (a, b) = (3, 1) centered at ξ = (r, 0). Curves shown for
orientations ϕ = π/2 and ϕ = 0.

Example 3.4. Here we consider a general domain Ω with a single elliptical trap centered at x = ξ of semi-
major and semi-minor axes εa and εb respectively and orientation ϕ with respect to the horizontal.

The GMFPT (2.61) reduces to the form

(3.69) τ = τ0 + ε2
[
πab

|Ω|
τ0 +

a2 + b2

4
− π|Ω| (a+ b)2

2
(R2

ξ1 +R2
ξ2) + |Ω|a

2 − b2

4
p ·

[
cos 2ϕ
sin 2ϕ

]]
.

The vector p is given as

(3.70) p =

[
Rξ1ξ1 −Rξ2ξ2 − 2π(R2

ξ1
−R2

ξ2
)

2Rξ1ξ2 − 4πRξ1Rξ2

]
=

[
Rξ1ξ1 −Rξ2ξ2

2Rξ1ξ2

]
− 2π

[
R2

ξ1
−R2

ξ2

2Rξ1Rξ2

]
.

For some regular domains such as ellipses and rectangles, the function R(x; ξ) is available in the form of
rapidly convergent series (see Appendices A.2 and A.3). The necessary derivatives Rξ1ξ1 , Rξ2ξ2 , Rξ1ξ2 , Rξ1

and Rξ2 in (3.70) can then be calculated by finite differences. We remark that if the trap center is chosen to
optimize τ0, then we have Rξ1 = Rξ2 = 0 and so

(3.71) τ = τ0 + ε2

[
πab

|Ω|
τ0 +

a2 + b2

4
+ |Ω|a

2 − b2

4

[
Rξ1ξ1 −Rξ2ξ2

2Rξ1ξ2 .

]
·
[
cos 2ϕ
sin 2ϕ

]]
.

In Fig. 5 and Fig. 6, we plot vector fields of the orientation vector p for the example of rectangular and
elliptical domains, respectively. In each case, we form the necessary derivatives of R(x; ξ) by combining the
rapidly convergent series stated in Appendix A together with centered finite difference approximations for
the first and second derivatives. As the disk domain deforms into an ellipse, the bifurcation of the minimizing
orientation noted in Fig. 3 is smoothed out. However, a generic observation remains that for traps centered
close to a smooth boundary, τ2 is minimized by orienting the semi-major axis of the trap parallel to ∂Ω.
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(a) L = 1, d = 1. (b) L = 1.01, d = 1. (c) L = 1.04, d = 1.

(d) L = 1.1, d = 1. (e) L = 1.5, d = 1.

Fig. 5. Minimization of τ2 for a single elliptical trap placed in the rectangular domain Ω = [0, L] × [0, d] for d = 1 and
L = 1 (a), L = 1.01 (b) L = 1.02 (c) L = 1.04 (d) L = 1.1 (e) L = 1.5. The directional arrow indicates the direction on which
the semi-major axis should be aligned to minimize τ2, the higher order GMFPT correction term.

In the case of the rectangular domain [0, L]× [0, d], we observe similar discontinuous structures that deform
from the square case (L = d) as the rectangle elongates (L > d). Curiously, the minimizing orientation of τ2
at the corners is observed to be when the semi-major axis is aligned into the corners.

(a) a = 1, b = 1. (b) a = 1.1, b = 1. (c) a = 1.5, b = 1.

Fig. 6. Minimization of τ2 for circular (a) and elliptical domains (b-c) at various locations. The directional arrow indicates
the direction along which the semi-major axis should be aligned so that the correction term to the GMFPT is minimized. In

Panel (a), the dashed blue line is the disk of radius rc =
√

2−
√
2 ≈ 0.7654 where the optimal orientation flips.

Example 3.5. The limit of an infinitely thin ellipse to a slit.

In this example we consider the GMFPT in the limit as b → 0 as the elliptical trap tends towards a thin
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slit. The formula for the GMFPT is uniformly valid in this limit and we find from (3.69) that

(3.72) lim
b→0+

τ = τ0 + ε2
[
a2

4
− πa2|Ω|

2
(R2

ξ1 +R2
ξ2) +

a2|Ω|
4

p ·
[
cos 2ϕ
sin 2ϕ

]]
.

In the case of a rectangular domain, we use this formula to explore the effect of trap orientation on the
GMFPT. In Fig. 7 we display τ2 for a trap with extent ε = 0.2, centered at ξ = [0.3, 0.4] inside the
rectangular domain Ω = [0, 1]× [0, 0.8]. The two curves plotted are for trap orientations ϕ = {π/2, π/6} and
for a = 1 and varying 0 < b < 1. As expected, we see no effects of orientation when a = b = 1 and smooth
behavior as b → 0.

Fig. 7. The effects of trap orientation and ellipticity on the high order correction to the GMFPT in the limit as b → 0.
The correction τ2 = ε−2(τ−τ0) to the GMFPT for a rectangular domain Ω = [0, 1]× [0, 0.8] with a single trap of extent ε = 0.2,
semi-major axis a = 1 centered at ξ = [0.3, 0.4] and varying semi-minor axis b. Curves shown for orientations ϕ = π/2 and
ϕ = π/6 which coincide for circular traps (b = 1).

4. Discussion. In this work we have developed a high order matched asymptotic expansion for the
MFPT of a Brownian walker to a small trap, enclosed in a two dimensional domain Ω. The high order
correction term describes the effect that the orientation of the trap has on the capture rate. We investigated
the role that trap orientation has on the MFPT and the GMFPT, observing a sensitive dependence on the
centering point of the trap in the domain. In the specific case where the enclosing domain is a disk, we
found a bifurcation where the correction to the GMFPT is minimized by orientating the semi-major axis

of the trap in the radial direction when the centering point satisfies 0 < |ξ| <
√

2−
√
2, and is minimized

by orientating in the angular direction when
√

2−
√
2 < |ξ| < 1 (Fig. 3). The discontinuous nature of this

transition appears to be related to the symmetries of the domain and similar effects are noted in rectangular
domains (Fig. 5). In domains with smooth boundaries, such as ellipses, we observe that the discontinuity
in the vector field of optimal directions is smoothed out (Fig. 6). However, we observe that the GMFPT
correction is generally minimized when the semi-major axis of the trap is aligned parallel to the boundary.

Our exposition of the role of trap orientation has focused on the case of an elliptical trap. This simple
geometry allowed for explicit calculation of several key quantities, in particular the logarithmic capacitance
dc, the quadrupole matrix Q and the moment polarization tensor M. The determination of these key
quantities was facilitated by a complex variable approach that utilized the known mapping between the disk
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and ellipses to solve three variations of Laplace problems (Appendix B). However, our Principal Result (1.4),
is valid for any trap geometry that features two lines of symmetry, for example those with rectangular or
dumbbell shape. To apply the present results to these geometries, it would be necessary to calculate the
three previously mentioned key quantities, either by a suitable complex transformation [22] or numerical
method [2]. We hypothesize that the correction term derived in (1.4) would vanish for trap geometries with
additional lines of symmetries, such as equilateral triangles or square. In such cases, further corrections
would be necessary to describe the effects of orientation.

In future work, we aim to derive the MFPT in the presence of multiple absorbing elliptical bodies. This
situation is relevant in the consideration of fly muscle cells which contain multiple well spaced nuclei of
elliptical shape and correlated orientations [42]. This work shows the steps required to derive higher order
corrections in a variety of narrow capture problems.

Acknowledgments. AEL acknowledges support from the NSF under award DMS 2052636.

Appendix A. Neumann Green’s functions for disks, rectangles and ellipses. Here we state some
known expressions for the Neumann Green’s function (1.5) for the disk, ellipse and rectangle domains.

A.1. Neumann Green’s function for a disk. In the case of the disk domain Ω = {x = (x1, x2) | x2
1+

x2
2 ≤ 1} and source ξ = (ξ1, ξ2), we have [22] that

G =
−1

2π
log |x− ξ|+R(x; ξ); R(x; ξ) = − 1

2π

[
1

2
log(1 + |x|2|ξ|2 − 2x · ξ)− 1

2
(|ξ|2 + |x|2) + 3

4

]
.

We calculate gradients ∇x = (∂x1
, ∂x2

), ∇ξ = (∂ξ1 , ∂ξ2) as

∇xG =
−1

2π

x− ξ

|x− ξ|2
+∇xR; ∇xR =

−1

2π

[
|ξ|2x− ξ

1 + |x|2|ξ|2 − 2x · ξ
− x

]
,(A.73a)

∇ξG =
1

2π

x− ξ

|x− ξ|2
+∇ξR; ∇ξR =

−1

2π

[
|x|2ξ − x

1 + |x|2|ξ|2 − 2x · ξ
− ξ

]
.(A.73b)

As x → ξ we have

R(ξ; ξ) =
−1

2π

[
log(1− |ξ|2)− |ξ|2 + 3

4

]
, ∇ξR(ξ; ξ) =

1

2π

[
2− |ξ|2

1− |ξ|2

]
ξ.

The second derivatives for the Hessian are

∂2R

∂ξj
2 =

−1

2π

[
|x|2(1 + |x|2|ξ|2 − 2x · ξ)− 2(|x|2ξj − xj)

2

(1 + |x|2|ξ|2 − 2x · ξ)2
− 1

]
,

∂2R

∂ξ1∂ξ2
=

1

π

(|x|2ξ1 − x1)(|x|2ξ2 − x2)

(1 + |x|2|ξ|2 − 2x · ξ)2
,

(A.73c)

∂2R

∂xj
2
=

−1

2π

[
|ξ|2(1 + |x|2|ξ|2 − 2x · ξ)− 2(|ξ|2xj − ξj)

2

(1 + |x|2|ξ|2 − 2x · ξ)2
− 1

]
,

∂2R

∂x1∂x2
=

1

π

(|ξ|2x1 − ξ1)(|ξ|2x2 − ξ2)

(1 + |x|2|ξ|2 − 2x · ξ)2
.

(A.73d)

The terms (Rξ1ξ1 −Rξ2ξ2) and Rξ1ξ2 as x → ξ are then

(A.73e) lim
x→ξ

(
∂2R

∂ξ1
2 − ∂2R

∂ξ2
2

)
=

1

π

ξ21 − ξ22
(1− |ξ|2)2

, lim
x→ξ

∂2R

∂ξ1∂ξ2
=

1

π

ξ1ξ2
(1− |ξ|2)2

.

18



A.2. Neumann Green’s function for a rectangle. The Green’s function for a rectangle Ω = [0, L]×
[0, d] is known [10, 23] in the form of a rapidly convergent series. For x = (x1, x2) and ξ = (ξ1, ξ2) we have

R(x; ξ) =
−1

2π

∞∑
n=0

log(|1− qnz+,+||1− qnz+,−||1− qnz−,+||1− qnζ+,+||1− qnζ+,−||1− qnζ−,+||1− qnζ−,−|)

− 1

2π
log

|1− z−,−|
|r−,−|

+
L

d

[
1

3
− max(x1, ξ1)

L
+

x2
1 + ξ21
2L2

]
− 1

2π

∞∑
n=1

log |1− qnz−,−|.

(A.74a)

where

z±,± ≡ eµr±,±/2, ζ±,± ≡ eµρ±,±/2, µ ≡ 2π

d
, q ≡ e−µL,(A.74b)

r+,± ≡ −|x1 + ξ1|+ i(x2 ± ξ2), r−,± ≡ −|x1 − ξ1|+ i(x2 ± ξ2),(A.74c)

ρ+,± ≡ |x1 + ξ1|+ i(x2 ± ξ2)− 2L, ρ−,± ≡ |x1 − ξ1|+ i(x2 ± ξ2)− 2L.(A.74d)

The self interaction term R(x;x) is given by

R(x;x) =
−1

2π

∞∑
n=0

log(|1− qnz0+,+||1− qnz0+,−||1− qnz0−,+||1− qnζ0+,+||1− qnζ0+,−||1− qnζ0−,+||1− qnζ0−,−|)

+
L

d

(
1

3
− x1

L
+

x2
1

L2

)
− 1

2π
log

(π
d

)
− 1

2π

∞∑
n=1

log(1− qn).

(A.75a)

where

z0+,+ ≡ eµ(−x1+ix2), z0+,− ≡ e−µx1 , z0−,+ ≡ eµix2 ,(A.75b)

ζ0+,+ ≡ eµ(x1−L+ix2), ζ0−,+ ≡ eµ(−L+ix2), ζ0+,− ≡ eµ(x1−L), ζ0−,− ≡ e−µL.(A.75c)

A.3. Neumann Green’s function for an ellipse. A rapidly convergent series for the solution of (1.5)
in the elliptical domain Ω = {x = (x1, x2) | (x1/a)

2 + (x2/b)
2 ≤ 1} was derived in [19]. For completeness we

restate the final result here. The first step is to introduce the transformation,

(A.76a) x1 = f cosh ξ cos η, x2 = f sinh ξ sin η, f =
√

a2 − b2,

which maps x = (x1, x2) ∈ Ω to the rectangle 0 ≤ ξ ≤ ξb and 0 ≤ η ≤ 2π where a = f cosh ξb and
b = f sinh ξb so that

(A.76b) f =
√
a2 − b2, ξb = tanh−1 b

a
= −1

2
log γ, γ =

(
a− b

a+ b

)
.

For a pair (x1, x2), the corresponding (ξ, η) satisfy

ξ =
1

2
log

(
1− 2s+ s

√
s2 − s

)
, s =

−µ−
√
µ2 + 4f2y2

2f2
, µ = x2

1 + x2
2 − f2.

For η∗ = sin−1(
√
p), the value of η is given by

(A.76c) η =


η∗, for x1 ≥ 0, x2 ≥ 0
π − η∗, for x1 < 0, x2 ≥ 0
π + η∗, for x1 ≤ 0, x2 < 0
2π − η∗, for x1 > 0, x2 < 0

, where p =
−µ+

√
µ2 + 4f2y2

2f2
.
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For points x = (x1, x2) and y = (y1, y2), the Green’s function G(x;y) for x ̸= y is given by

(A.77) G(x;y) =
1

4|Ω|
(|x|2+|y|2)− 3

16|Ω|
(a2+b2)− 1

4π
log γ− 1

2π
max(ξ, ξ0)−

1

2π

∞∑
n=0

log

 8∏
j=1

|1− γ2nzj |

 ,

where |Ω| = πab. The complex constants z1, . . . , z8 are defined in terms of (ξ, η), (ξ0, η0) and ξb by

z1 = e−|ξ−ξ0|+i(η−η0), z2 = e|ξ−ξ0|−4ξb+i(η−η0), z3 = e(ξ+ξ0)−2ξb+i(η−η0),

z4 = e(ξ+ξ0)−2ξb+i(η−η0), z5 = e(ξ+ξ0)−4ξb+i(η+η0), z6 = e−(ξ+ξ0)+i(η+η0),

z7 = e|ξ+ξ0|−2ξb+i(η+η0), z8 = e−|ξ+ξ0|−2ξb+i(η+η0).

The point (x1, x2) is mapped to (ξ, η) while the source point (y1, y2) is mapped to (ξ0, η0) by the transfor-
mation (A.76). The quantity R(y;y) is given by

R(y;y) =
|y|2

2|Ω|
− 3

16|Ω|
(a2 + b2) +

1

2π
log(a+ b)− ξ0

2π
+

1

4π
log

(
cosh2 ξ0 − cos2 η0

)
− 1

2π

∞∑
n=1

log(1− γ2n)− 1

2π

∞∑
n=0

log

 8∏
j=2

|1− γ2nz0j |


Here the constants z0j for j = 2, . . . , 8 are

z02 = γ2, z03 = γe−2ξ0 , z04 = γe2ξ0 , z04 = γ2e2ξ0+2iη0 ,

z06 = e−2ξ0+2iη0 , z07 = γe2iη0 , z08 = γe2iη0 , γ =
a− b

a+ b
.

Appendix B. Inner problems for the exterior of the ellipse.

We solve a variety of Laplace equations posed in the exterior of the elliptical domainA = {y = (y1, y2) | y21/a2+
y22/b

2 < 1}. In each case, we make use of the complex transformation

(B.78) y = α z+
β

z
,

which maps the unit disk to the ellipse A with semi-major and semi-minor axes a and b respectively with
the semi-major axis aligned on the horizontal axis. On the unit disk z = eiθ, we have that

y = αeiθ + βe−iθ = (α+ β) cos θ + i(α− β) sin θ = a cos θ + ib sin θ.

The mapping parameters α and β are then

(B.79) α =
a+ b

2
, β =

a− b

2
.

The Laplace equations to be considered will be solved in the unit disk then mapped to the ellipse by the
inverse transformation of (B.78). The large argument behavior of the inverse transform of (B.78) is calculated
as follows for |y| ≫ 1

(B.80) z ∼ y

α
− β

y
=

y

α
− βȳ

|y|2
, |z| = |y|

α

[
1− αβ

|y|4
yT

(
1 0
0 −1

)
y +O(|y|−4)

]
, |y| → ∞.

B.1. The order O(ε0) problem. The leading order inner problem is given by

∆yv0c = 0 , y ∈ R2 \ A; v0c = 0, y ∈ ∂A;(B.81a)

v0c = log |y| − log dc +
d · y
|y|2

+
yT Q̃y

|y|4
+ · · · |y| → ∞.(B.81b)
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In classic potential theory, the logarithmic term is the monopole, d is the dipole vector and Q̃ is the
quadrupole matrix. Our goal is to obtain the solution of (B.81) and identify the logarithmic capacitance dc
and quadrupole matrix Q̃. In the scenario of the unit disk (a = b = 1), the unique solution is log |z|. For
the problem (B.81), we apply the mapping (B.80) to obtain the far field behavior

(B.82) v0c(y) = log |z| ∼ log |y| − logα− αβ

|y|4
yT

(
1 0
0 −1

)
y +O(|y|−4).

Hence in comparing (B.81b) with (B.82), and applying (B.79), we establish that

(B.83) dc = log
a+ b

2
, d = 0, Q̃ = −αβ

(
1 0
0 −1

)
= −a2 − b2

4

(
1 0
0 −1

)
.

The vanishing dipole vector d = 0 is consistent with the two lines of symmetry of the elliptical domain. Ex-
tending this analogy, domains with four lines of symmetries (e.g. square) would have a vanishing quadrupole
matrix requiring an even higher order of expansion.

B.2. The order O(ε1) problem. The first order inner problem is vector valued and given by

∆yv1c = 0 , y ∈ R2 \ A; v1c = 0, y ∈ ∂A;(B.84a)

v1c = y +
M̃y

|y|2
+ · · · |y| → ∞.(B.84b)

For the case of the unit disk, we have that v1d = z − z/|z|2. Hence for the elliptical domain under the
transformation (B.80), we have that

(B.85) v1c(y) = αv1d(y) = y +
M̃y

|y|2
+ · · · |y| → ∞; M̃ = −α

(
a 0
0 b

)
.

B.3. The order O(ε2) problem. In this subsection, we derive the solution of the higher order correc-
tion problem

∆yv2c = −1, y ∈ R2 \ A; v2c = 0, y ∈ ∂A;(B.86a)

v2c = −|y|2

4
+ yTBy + · · · |y| → ∞, B =

[
B11 B12

B12 −B11

]
.(B.86b)

where Trace(B) = 0. The general solution takes the form v2c = − 1
4 |y|

2+v2h where the homogeneous solution
satisfies

∆yv2h = 0, y ∈ R2 \ A; v2h =
|y|2

4
, y ∈ ∂A;(B.87a)

v2h ∼ yTBy + · · · |y| → ∞.(B.87b)

As with previous solutions of inner problems, we solve the corresponding problem on the disk and use the
complex transformation (B.78) to map the solution to A. Recalling that when z = eiθ, we have |y|2 =
(α2 + β2) + 2αβ cos 2θ. Hence, the homogeneous solutions is expressed in terms of the disk solution in
complex form as

(B.88) v2h = a1 +Re[b1z
2 + b2z

−2] + Im[c1z
2 + c2z

−2].

On the boundary z = eiθ, we have the conditions

1

4
(α2 + β2) +

1

2
αβ cos 2θ = a1 + (b1 + b2) cos 2θ + (c1 + c2) sin 2θ,
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which yields the conditions

a1 =
1

4
(α2 + β2), b1 + b2 =

1

2
αβ, c1 + c2 = 0.

To establish the behavior as |y| → ∞, we consider from (B.80) that

z2 ∼
(
y

α
− β

y

)2

=
y2

α2
− 2

β

α
+

β2

y2
, as |y| → ∞.

The large argument behavior of v2h given in (B.88) is

v2h ∼ b1
α2

Re[y2] +
c1
α2

Im[y2] +
1

4
(α2 + β2)− 2

β

α
b1 +O(|y|−2).

Now, comparing with (B.87b), we see that

(B.89) b1 = α2B11, c1 = α2B12.

Hence, we obtain the large argument behavior of (B.87) to be

v2h ∼ yTBy +
1

4
(α2 + β2)− 2αβ B11 ++O(|y|−2),(B.90a)

and finally establish the large argument behavior of (B.86) to be

(B.91) v2c = −|y|2

4
+ yTBy + d2c +O(|y|−2), as |y| → ∞; d2c =

1

4
(α2 + β2)− 2αβ B11.
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