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Abstract

We study pattern formation in a model of cyanobacteria motion recently proposed by
Galante, Wisen, Bhaya and Levy. By taking a continuum limit of their model, we derive a
novel fourth-order nonlinear parabolic PDE equation that governs the behaviour of the model.
This PDE is ut = −uxx − uxxxx + α

(
uxuxx

u

)
x
. We then derive the instability thresholds for the

onset of pattern formation. We also compute analytically the spatial profiles of the steady state
aggregation density. These profiles are shown to be of the form sechp where the exponent p is
related to the parameters of the model. Full numerical simulations give a favorable compari-
son between the continuum and the underlying discrete system, and show that the aggregation
profiles are stable above the critical threshold.

1 Introduction

The goal of this paper is to derive a new PDE for a model of bacterial aggregation. In a series of
papers [1, 2, 3, 4, 5], the authors proposed several models of motion of cyanobacteria Synechocystis
sp. Two key aspects are observed experimentally: the formation of aggregates – areas of high
bacterial density; and the motion towards light (phototaxis). Phototaxis requires sufficiently high
light density to proceed. By contrast, aggregates form even in the absence of light, and they also
help with phototaxis when the light gradient is sufficiently high. To understand the formation
of aggregates in low light, in papers [4, 5, 3], the authors proposed that it can be a result of
quasi-random motion, in agreement with experiments. As observed in [4], “Some cells move in a
persistent pattern, in a direction that changes frequently, with no apparent bias towards light.” In
[4] the authors proposed a simple stochastic agent-based model which leads to aggreation. In [2],
they further refined this model in the simple one-dimensional setting. By averaging out the noise,
they obtained an ODE model on a lattice for the average density. They also extended this model
to two dimensions in [3].

For reader’s convenience, let us present a simplified derivation of the model in [2] here. Each
bacterium is oriented either left or right. At each time-step, the bacterium either moves to an
adjacent cell according to its current orientation, or – with a certain rate – it chooses a new
orientation and then moves to an adjacent cell. The choice of new orientation is not completely
random; rather the bacterium picks at random another bacterium within its sensing radius, and
then orients itself to move towards it. In the mean field limit, these assumptions lead to the
following ODE model on a lattice consisting of n bins:
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dRj
dt

= aRj−1 − (a+ c)Rj + cUj−1η
+
j−1 (1a)

dLj
dt

= aLj+1 − (a+ c)Lj + cUj+1η
−
j+1 (1b)

Uj = Lj +Rj ; (1c)

η±j =

∑d
k=1 Uj±k∑d

k=1 (Uj+k + Uj−k)
(1d)

Here, Rj(t) and Lj(t) is the density of right and left-moving bacterium in the bin j = 1 . . . n at
time t; a is the rate with which the bacterium moves one bin according to its orientation; c is the
rate with which the bacterium moves after switching to a new orientation. The parameter d is the
sensing radius of the bacterium. System (1) is in fact equivalent to a slightly more complicated
model presented in [2]1

In this paper we provide some insights into the model (1) and derive a new PDE system based
on the continuum limit of (1). We start by computing thresholds for the formation of aggregates.
In §3, using linear stability analysis of homogeneous steady state, we find that the aggregates form
when c > c0 where c0 = 2a/d. By contrast, for c < c0, the system converges to a homogeneous
solution. Biologically, this indicates that the bacterium must “look around” within its sensing
radius and change the orientation accordingly with sufficient frequency in order to be able to form
aggregates.

When c > c0, to study the shape and extent of the aggregates, in §4 we derive the continuum
limit of the the model (1) in the limit of large number of bins. In an appropriate limit, we obtain
the following novel parabolic PDE:

ut = −uxx − uxxxx + α
(uxuxx

u

)
x
. (2a)

Here, α is given in (20) in terms of model parameters, and it controls the extent of the aggregate.
This PDE allows us to give a formula for the profile of the aggregation spike. We show that (2a)
admits a steady state solution in the form of a spike, given by

u(x, t) = C

[
sech

(√
α− 1

2
x

)] 2
α−1

. (3)

The model (1) is closely related to a larger class of “swarming” models of biological aggregation,
based on social attraction-repulsion forces; see for example [6, 7, 8, 9]. Broadly speaking, the two
main approaches consist of modeling individuals as particles, resulting in a large ODE system for
particle positions, or take the continuum limit of the particle model, which yields a non-local PDE
for swarm density and velocity [10, 11, 12, 13, 14]. Recently in [15], the authors considered an
aggregation model with non-local repulsion, and used a low-frequency truncation in the Fourier
space to approximate the nonlocal PDE by a local fourth-order PDE of Cahn-Hilliard type: ut =(
u
(
u− u2 − uxx

)
x

)
x
. They were also able to construct an inhomogeneous steady state. Their model

is related to models used in thin-film models, and the steady state profiles typically have a plateau,
with the density having a discontinuous second derivative at the boundary u = 0.

1The system presented in [2] (see equation (17-20) there) has four variables: Rmi , Lmi , Rsi , Lsi , corresponding to
motile or stationary, and left or right-moving populations. Defining Ri = Rmi + Rsi and Li = Lmi + Lsi , one then
obtains (1) directly from equations (17-20) of [2].
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There are also many local models in the literature that exhibit spike solutions such as (3).
Most of these are reaction-diffusion systems involving two or more components. This includes the
widely-used Keller-Segel model [16] and its many variants [17, 18, 19, 20, 21]; the Gray-Scott model
[22] and the Gierer-Meinhardt model [23]. Some other examples of PDE models that exhibit spike
patterns include [24, 25, 26, 27]. These models are reaction-diffusion systems involving two or more
components, often with nonlocal terms. By contrast, the PDE we derived is a single fourth order
equation. This is among the simplest possible settings that give rise to a stable spike solution.

The summary of the paper is as follows. In §2 we rewrite the model (1) in a symmetric form,
which is more convenient for analysis. In §3 we derive the stability of the homogeneous state. The
continuum (PDE) limit is derived in §4 and we construct the spike profile in §5. We conclude with
some open problems in §6.

2 Symmetrization

To simplify the subsequent analysis, we first recast the model (1) in a more symmetric form. In
particular this step is essential in deriving the continuum limit. Using Uj = Rj + Lj and adding
(1a) and (1b) we obtain

dUj
dt

= a(Rj−1 + Lj+1)− (a+ c)Uj + c
(
Uj−1η

+
j−1 + Uj+1η

−
j+1

)
(4)

To obtain a closed system, define
Vj = Rj+1 + Lj−1. (5)

Note that

dRj+1

dt
= aRj − (a+ c)Rj+1 + cUjη

+
j (6a)

dLj−1
dt

= aLj − (a+ c)Lj−1 + cUjη
−
j (6b)

and recall from (1d) that η+j + η−j = 1. Adding (6a) and (6b) together we therefore obtain

dVj
dt

= (a+ c)(Uj − Vj) (7)

Finally, rewrite Rj−1 +Lj+1 = Uj−1 +Uj+1− (Lj−1 +Rj+1) = Uj−1 +Uj+1− Vj . In summary, the
model (1) is equivalent to

dUj
dt

= a(Uj−1 + Uj+1 − Vj)− (a+ c)Uj + c
(
Uj−1η

+
j−1 + Uj+1η

−
j+1

)
(8a)

dVj
dt

= (a+ c)(Uj − Vj) (8b)

η±j =

∑d
k=1 Uj±k∑d

k=1 (Uj+k + Uj−k)
. (8c)

Physically speaking, Vj = Rj+1 +Lj−1 represents the density of bacteria in the immediate vicinity
of bin j that is currently diffusing away from bin j, whereas Uj = Rj + Lj is the total density of
bacteria. Formulation (8) has the considerable advantage of having the second equation reduce to
a simple linear ODE. Moreover, both equations are completely symmetric about the index j. It
turns out that this will be advantageous for many of the calculations we will carry out. As such,
this is the formulation we use for the remainder of this paper.
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Note that (8b) suggests that Vi decays towards Ui. Numerical simulations indicate that this is
indeed the case, after an initial transient period. Setting Vi = Ui in (8a) then yields a simplified
model,

dUj
dt

= Uj−1

(
a+ cη+j−1

)
+ Uj+1

(
a+ cη−j+1

)
− (2a+ c)Uj . (9)

This system has the following simple interpretation. At each time step, the species moves one
lattice spacing at random with rate a, and it moves one lattice spacing towards itself with rate c.

3 Stability of the constant state

The original model (1) admits a homogeneous equilibrim Lj = Rj = C for any constant C. In this
section we analyse the stability of this equilibrium. It is more convenient to carry out the analysis
for the symmetrized system (8) whose steady state is given by Uj = Vj = U. We perturb

Uj(t) = U + φj(t); Vj(t) = U + ψj(t) (10)

where |φj | , |ψj | � 1 and we obtain the linearized equations

dφk
dt

=
(
a+

c

2

)
(φk−1 + φj+1)− aψj − (a+ c)φj (11a)

+
c

4d
(2φj + φj−1 + φj+1 − φj+d − φj−d − φj+d+1 − φj−d−1)

dψj
dt

= (a+ c) (φj − ψj) . (11b)

This (2n)×(2n) linear problem is decomposable into n 2x2 subproblems as follows. Make an ansatz

φj = φeλte
2πmji
n ; φj = φeλte

2πmji
n ; m = 0 . . . n− 1

to obtain

λφ = (2a+ c)φ cos (θ)− aψ − (a+ c)φ+
c

2d
φ (1 + cos θ − cos (dθ)− cos ((d+ 1)θ)) (12a)

λψ = (a+ c) (φ− ψ) (12b)

where

θ =
2πm

n
; m = 0 . . . n− 1. (12c)

There are two eigenvalues for each choice of m, giving 2n eigenvalues in total. The solution of the
2x2 eigenvalue problem (12) is given by a quadratic

λ2 − (f(θ)− c)λ− (a+ c)f (θ) = 0 (13)

where we defined

f(θ) = (2a+ c) (cos (θ)− 1) +
c

2d
(1 + cos (θ)− cos (dθ)− cos ((d+ 1)θ)) . (14)

Note that f(θ) − c ≤ 0 for all θ so that a sufficient and necessary condition for stability is that
f(θ) < 0 for all θ. Elementary computations show that the instability first appears at θ = 0. Since
f(0) = f ′(0) = 0, the threshold is obtained by setting f ′′(0) = −2a+ dc = 0, which yields

c0 = 2a/d (15)
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for the critical threshold value; the homogeneous steady state is stable if c < c0 and is unstable if
c > c0. Moreover all the high-frequency modes are stable: the highest-frequency mode corresponds
to θ = π which is always stable since f(π) = −2(2a + c) < 0. This suggests that a continuum
approach will be useful.

We remark that the eigenvalues of the simplified model (9) are given by λ = f(θ) with θ as in
(12c). Hence there is a spectral equivalence of models (?? and (9): one is stable if and only the
other is stable.

Figure 3 illustrates the full dynamics of (8) in stable and unstable regimes. In the unstable
regime c > c0 (figure 3a), pattern formation takes place. In the stable regime c < c0 (figure 3b),
arbitrary initial conditions converge to a constant state. We now turn our attention to the pattern
formation that occurs in the unstable regime.
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Figure 1: The function f(θ) given by (14) whose sign determines the stability of the homogeneous
steady state. Here, d = 1, a = 0.3 and c is as inidicated. It first crosses zero when f ′′(0) = 0. The
threshold is c0 = 2a/d = 0.6 with the steady state stable when c < c0 and unstable when c > c0.

4 Continuum limit

To study pattern formation which occurs when c > c0, we first derive the continuum limit of the
bin model (1). Assume that the inter-bin distance is h and let h → 0. Let Uj(t) = u(x, t) so that
Uj+k(t) = u(x + kh, t) and similarly let Vj = v(x, t). We then expand in Taylor series in h. To
simplify the calculation, define

g(h) = u(x− h)

∑d
k=1 u (x− h− kh)∑d

k=1 u (x− h− kh) +
∑d

k=1 u (x− h+ kh)
,

so that the nonlinear terms in the equation (8a) may be written as

Uj−1η
+
j−1 + Uj+1η

−
j+1 = g(h) + g(−h)

= 2g(0) + h2g′′(0) +
h4

12
g′′′′(0) +O(h6).

After some algebra we obtain g(0) = 1
2u, g

′′(0) = −d
2uxx so that up to O(h2) terms, we obtain a

linear PDE system

ut = a (u− v)− h2
(
c
d

2
− a
)
uxx, vt = − (a+ c) v. (16)
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Figure 2: Comparison between the discrete model (1) and its continuum limit (18). (a) Left:
space-time contour plot of numerical simulation of the discrete model (1) with n = 50, a = 1, c =
2.2, d = 1. Initial conditions are Vj = Uj = 0.01 sin(2πj/n)−0.2 sin(6πj/n)+1. Middle: space-time
plot of continuum model with the same parameters and initial conditions. Right: Comparison of a
snapshot at time as indicated. Excellent agreement is observed. Note also the metastable coarsening
behaviour which eventually results in a single spike. (b) Same as (a) except with c = 1.8. The
solution converges to a homogeneous steady state.
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Linear stability analysis of the homogeneous state u(x, t) = v(x, t) = u yields the same threshold
cd2 − a = 0 as was obtained from the stability analysis of the original discrete system (i.e. equation
(15)). Moreover because the system is linear, when cd/2 < a, the system (16) converges to a
constant equilibrium state.

To study the formation of aggregates that happens when cd/2 > a, we need to incorporate the
nonlinear terms which requires an expansion up to O(h4). A very long computation yields

g′′′′(0) =

[
−1

2
− d

2

(
d2 + 2d+ 3

)]
uxxxx +

(2d+ 1) (d+ 1)2

2

(uxuxx
u

)
x

(17)

and we finally obtain the nonlinear PDE system

ut = a (u− v)−Auxx −Buxxxx + C
(uxuxx

u

)
x
, vt = (a+ c) (u− v) ; where (18a)

A = h2
(
c
d

2
− a
)

; B =
h4

12

( c
2

[
1 + d

(
d2 + 2d+ 3

)]
− a
)

; C =
h4

24
c (2d+ 1) (d+ 1)2 . (18b)

This system is a good approximation for parameter values close to the threshold c ∼ c0 = ad/2.
The form of the second equation as well as numerics indicate that, except for an initial transient
period, v quickly approaches u. Assuming that cd/2 > a (i.e. c > c0, when the homogeneous
steady state is unstable), we further reduce (18) to a single dimensionless PDE by setting u = v

and scaling x = x̂ (B/A)1/2 ; t = t̂BA−2. After dropping the hats we then obtain the simplified
model

ut = −uxx − uxxxx + α
(uxuxx

u

)
x

(19)

where

α :=
c (2d+ 1) (d+ 1)2

(c [1 + d (d2 + 2d+ 3)]− 2a)
. (20)

With some algebra, it can be shown that α > 1 under the usual assumption c > 2a
d (in fact,

α > 12/7, with this lower bound corresponding to d = 1 and c→∞). The condition α > 1 will be
important later for deriving the steady state of the system.

Note that the “backwards-diffusion” term −uxx in (19) has a destabilizing effect, but it is
balanced by the fourth-order term −uxxxx which stabilizes the high-frequency modes. As will be
shown in §5, the nonlinear term in the equation is responsible for the formation of stable aggregation
patterns.

Figure 2 shows a direct comparison between the discrete system (8) and the continuum limit
(18). For the simulation of the continuous system, we used finite differences with a semi-implicit
stepping on the u equation, and forward-Euler stepping on the v equation. That is, we discretize
the space so that u(x, t) ∼ ~u(t) where ~u is the discretized vector approximation for u and similarly
for v, and discretize the PDE as

~u(t+ ∆t)− ~u(t)

dt
= a (~u(t)− ~v(t))−AL2~u(t+ ∆t)−BL4~u(t+ ∆t) + CL1

(
L1~uL2~u

~u

)
, (21a)

~v(t+ ∆t)− ~v(t)

dt
= (a+ c) (~u(t)− ~v(t)) . (21b)

The operators Li denote the discretization of the ith derivative. We used centered differences for
L1 and L2, and used L4 = (L2)

2. In the simulations of figure 3, we used 150 meshpoints for the
continuous model with dt = 0.1 for both discrete and continuum models. As the simulations show,
there is an excellent agreement between the two models.

7



In agreement with the linear theory, the system converges to a constant state when c < c0. On
the other hand, when c > c0, a complex pattern formation mechanism is observed: several spikes
form, followed by a slow coarsening process, until only a single spike remains. In the next section
we construct the profile of such a spike.

5 Inhomogeneous steady state
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Figure 3: (a) Vector field corresponding to (24). Special orbits w1, w2 are indicated. They cor-
respond to homoclinic connections between the equilibria (z, w) = (±

√
α− 1, 0). (b) Comparison

between the aggregate steady state of (8) and asymptotics (27). Parameter values are n = 50,
a = 0.3, d = 1 and with c as indicated.

We now consider the inhomogeneous steady state on an infinite line when c > c0. We set ut = 0
in (19) and integrate once. Assuming that u(x) → 0 as x → ±∞, the constant of integration is
zero and the steady state then satisfies

0 = −ux − uxxx + α
uxuxx
u

. (22a)

Equation (22a) has an interesting special closed-form solution, which we will now derive. The ODE
(22a) admits a scaling symmetry u → λu which suggests a change of variables u = exp(v). This
transforms the scaling symmetry into a translational symmetry and therefore yields a reduction of
order by letting vx = z :

z′′ + z + (3− α)zz′ + (1− α)z3 = 0, z = ux/u. (23)
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Rewrite (23) as a first-order system

dz

dx
= w; (24a)

dw

dx
= −z + (α− 3)zw + (1− α)z3. (24b)

The phase portrait of this system is shown in figure 3(a), with heteroclinic orbits connecting the
two saddles indicated. The orbits of this system satisfy a first order Abel ODE:

dw

dz
=
−z
w
− (3− α)z − (1− α)

z3

w
. (25)

It turns out that the heteroclinic orbits have a particularly simple form: w = Az2 +B. Substituting
this ansatz back into (25) we obtain two possible solutions

w1 =
(α− 1)z2 − 1

2
; w2 = −z2 +

1

α− 1
.

If w = w1 then (24a) yields
dz

dx
=

(α− 1)z2 − 1

2
(26)

so that

v′(x) = z = − (α− 1)−1/2 tanh

(
(α− 1)1/2

2
x

)
and using u = exp(v) we finaly obtain the profile of the steady state,

u(x) = C

[
sech

(√
α− 1

2
x

)] 2
α−1

. (27)

On the other hand, if w = w2 we obtain u = C cosh
(

(α− 1)−1/2 x
)

which is unphysical, since it

blows up for large x.
In figure 3(b) we show a direct comparison between the inhomogeneous steady state of the

discretized model (1) (shown in circles) and the continuum-limit approximation (27) (shown using
solid line). The circles were obtained using time-integration of (1), until it converged to a single-
spike steady state. The normalizing constant C in (27) was chosen so that u(x) has the same mass
as the discrete solution.

While our construction assumed an infinite domain, numerics indicate that a spike solution
exists on a finite domain (with either periodic or Neumann boundary conditions), as long as the
domain is sufficiently large (see figure 3(b)). By periodic extension, this implies the existence of
K-spike solutions on a domain of K times the size.

Several profiles are compared for different values of c; good agreement is observed. Note however
that the agreement is better when c is closer to c0 = 0.6; this is in agreement with the formal
asymptotics which in principle assume that c is close to c0, although in practice the approximation
appears to work well as long as the width of the spike spans enough grid points.
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6 Discussion

In this paper we investigated the stability properties of the lattice model (1) introduced in [2],
derived the continuum limit approximation resulting in a PDE, and computed analytically the
aggregation spike profile.

The lattice model (1) incorporates particle direction information. It is very closely related to
the simpler model (9) which does not have direction information. The latter is one of the simplest
possible models of particle aggregation.

We only scratched the surface for the PDE model (19). The stability of spike solutions remains
an open problem. For a single spike on entire line, the stability problem is obtained by linearizing
u(x, t) = u0(x) + eλtφ(x), resulting in the following problem:

λφ = −φxx − φxxxx + α
∂

∂x

(
u′0
u0
φxx +

u′′0
u0
φx −

u′′0u
′
0

u20
φ

)
. (28)

Here, u0(x) is given by (27). Numerical computations of the problem (28) suggest that all eigen-
values are negative, in agreement with the full numerical simulation of (19), as well as the original
lattice model (1). Moreover, these computations also suggest that there is a continuous spectrum
along the negative real axis the λ < 0.

For simplicity, as a first step we only considered a one-dimensional model in this paper. It is
an important open problem to extend this work to two dimensions. Two dimensional motion is
complicated by the fact that the direction angle is an additional independent variable. A possible
simplifying assumption is to restrict the motion along four directions (west-right-north-south) [3].
However this assumption introduces artefacts which are undesirable, such as concentrations on
curves [3]. It is an open problem to derive the continuum limit in two dimensions.

Another future project is to incorporate proliferation mechanisms, such as logistic growth. It
would be interesting to see if incorporating such a mechanism can lead to the formation of multiple
spikes or more complex dynamics. For instance in [19], very complicated dynamics were observed
when adding logistic growth to a well-known Keller-Segel chemotaxis model.

Numerically, we observed metastable behaviour for a solution that consists of two or more spikes
(see figure 2), whereby two spikes eventually collide after a very long time, suggesting an instability
due to (possibly exponentially small) translational eigenvalues. Similar metastability is observed
in Cahn-Hilliard PDE, see for example [28, 29]. A single spike solution, on the other hand, appears
to be stable.

Phototaxis effects can be incorporated into the model, for example by modifying the expressions
for the transition probabilities η± in (1d). Finally, in [3], Weinberg and Levy generalize the model
to two dimensions by considering particles moving in four directions on a square lattice rather
than two directions on a binned line. It would be interesting to see which of our results can be
generalized to two spatial dimensions.
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