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Abstract

We consider a di�usive interface surface tension model under compressible �ow.

The equation of interest is the Cahn-Hilliard or Allen-Cahn equation with advection

by a non-divergence free velocity �eld. We prove that both model problems are

well-posed. We are especially interested in the behavior of solutions with respect

to droplet breakup phenomena. Numerical simulations of 1,2 and 3D all illustrate

that the Cahn-Hilliard model is much more e�ective for droplet breakup. Using

asymptotic methods we correctly predict the breakup condition for the Cahn-Hilliard

model. Moreover, we prove that the Allen-Cahn model will not break up under

certain circumstances due to a maximum principle.

1 Background

There is a need to develop simple computational models for surface tension in the droplet
breakup phenomena. As an example, consider a piece of material that expands under
a sudden pulse of energy that comes from laser fusion [21] or heavy ion fusion [12].
The material will breakup, and surface tension plays an important role in the ensuing
dynamics. There are many numerical methods that deal with surface tension in two-
phase �uids. This problem is known for its computational sti�ness. It contains two
di�erent time scales, the small surface tension time scale and the convection time scale.
Three main algorithms exist for two-phase �uids. The sharp interface method tracks
the interface explicitly, yet it requires extensive processing when the interface splits and
merges. Since droplet breakup involves mainly merging and splitting of the interface, we
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do not consider sharp interface methods in this paper. The level-set algorithm uses a
implicit surface function to track the boundary. The di�usive interface algorithm uses a
phase variable to describe the transition between materials. These algorithms have been
studied theoretically and numerically with many variants.

The basic level-set model for two immiscible �uids uses a function φ, where φ = 0
denotes the boundary between the two �uids. Among the �rst to propose this model is
[29], which combines the Navier-Stokes equation for two �uids with a force at the interface.

ρ
∂~V

∂t
+ (~V · ∇)~V = −∇p+∇ · (2νD)− τκ(φ)∇H(φ) + f. (1)

This equation is then coupled with the level set equation for the interface:

φt +∇ · (φ~V ) = 0. (2)

In this model, ~V is the velocity �eld, D is the deformation tensor 1
2
(∇~V + ∇~V T ) −

1
3
∇~V I, p is the pressure and f denotes external force. These parameters are the same

as the original Navier-Stokes model. κ(φ) = ∇ · ∇φ|∇φ| is the curvature of the boundary,
τ is the surface tension coe�cient, and H is the Heaviside function, or in the numerical
implementation, a smoothed Heaviside function. (1) is the Navier-Stokes equation with
a surface tension term κ~nδ(d), where ~n is unit outward normal vector at the front, d
is normal distance to the front, and δ is the Dirac delta function. Recent models are
designed to improve computational speed [30, 28]. The level-set model can be naturally
modi�ed for a compressible �ow, with the price of a more complicated set of equations,
e.g. [9].

The original Cahn-Hilliard equation [8], together with the Allen-Cahn equation are
one of the most well-known dynamic models for di�use interface dynamics associated
with surface energies. The Cahn-Hilliard equation can be written as an H−1 gradient
descent for a Ginzburg-Landau free energy E(u):

ut = ∆(
δE(u)

δu
) + λu, (3)

where

E(u) =

∫
(ε|∇u|2 +

1

ε
g(u)), (4)

and g(u) is a double-well potential that characterizes the two phases. It is normally taken
as an even-order polynomial, for example

g(u) = u2(1− u)2, (5)

in which case f(u) = g′(u) = 2u(1− u)(1− 2u). The Allen-Cahn equation, on the other
hand, is L2 gradient descent for the same energy. Papers such as [25, 2, 10] analyze the
convergence and stability of the Cahn-Hilliard equation.
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The combination of Cahn-Hilliard dynamics and �uid mechanics give rise to several
related models for �uid interfaces. For example, the incompressible Navier-Stokes-Cahn-
Hilliard model [6, 7, 16, 18, 35] couples the incompressible �uid mechanics with a di�use
interface model.

ρ(
∂~V

∂t
+ (~V · ∇)~V ) = −∇p+∇ · (2νD)−∇ · (ερ∇u⊗∇u) + f, (6)

∇ · ~V = 0, (7)

ρ(
∂u

∂t
+ ~V · ∇u) = ∆K(u), (8)

K(u) =
∂g(u)

∂u
− 1

ρ
∆u. (9)

The ∇ · (ερ∇u ⊗ ∇u) term in (6) represents surface tension. The additional advection
term represents the mechanics of �uid �ow.

One can modify the above model to include compressible �uids by replacing equation
(7) with

∂ρ

∂t
+ ~V · ∇ρ = 0, (10)

see [22, 1, 11]. Other models include [26], which proposes the Cahn-Hilliard type model
under a gravitational �eld.

It should be noticed that the level-set model and the Cahn-Hilliard model have math-
ematical relationships. When ε→ 0, the Ginzburg-Landau energy (4) Γ-converges to the
surface energy

∫
|∇u|, which can be considered as the surface tension related energy in

the level set model [19, 10, 23].

In this paper, we focus on the movement of a small droplet of incompressible material
within another compressible �uid. It is an important model problem for a full-scale
numerical simulations for material breakup. Thus, we take a simpler model to that of the
compressible Navier-Stokes-Cahn-Hilliard model [1]. Instead of having the velocity �eld
satisfying a Navier-Stokes equation, we consider the same model under a speci�ed velocity
�eld which may not be divergent free, and focus on the droplet breakup phenomena.

In the next section we present the speci�c models, namely the Cahn-Hilliard equation
with advection and Allen-Cahn equation with advection. Section 3 analyzes the basic
property and droplet breakup condition of the Cahn-Hilliard equation with advection.
Section 4 analyzes the Allen-Cahn equation with advection. Section 5 shows numerical
simulation results for both models.

2 Model problem

We consider the following model for a di�usive interface with advection [22],

ut +∇ · (u~V ) = F(u), (11)
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where ~V is the prescribed external �ow �eld and F(u) represents the surface tension

force. When ~V = 0, we obtain the original di�use interface equation. Our main interest
is when ~V is expanding, or problems in which ∇ · ~V 6= 0 in general. We note that the
incompressible case is well studied, however the compressible case less so. For simplicity
we choose the Neumann condition ∂u

∂n
= 0 on ∂Ω. All the models considered in this paper

are of the form (11) with the F term related to Ginzburg-Landau energy (4).

2.1 The advective Cahn-Hilliard equation

The original Cahn-Hilliard equation comes from a phase separation problem. It is a
non-local Mullins-Sekerka �ow for E(u) [13, 25, 2] .

F(u) = ∆(
δE(u)

δu
). (12)

Thus, the equation can be written as

ut +∇ · (u~V ) = ∆K(u), (13)

where

K(u) = −ε∆u+
1

ε
f(u). (14)

2.2 The advective Allen-Cahn equation

In the Allen-Cahn equation, the surface tension term is a mean curvature �ow for the
energy E(u). Thus, the equation can be written as

ut +∇ · (u~V ) = −K(u), (15)

with the same K as in (14).

2.3 The advective Allen-Cahn equation with mass conservation

If we integrate the original Allen-Cahn equation, we can see that it does not automatically
conserve mass. Thus, an additional term λ is often added to the equation for this reason
[27]. We can add a similar term here, but we would like to add λu instead of λ to keep u
localized. The equation can be written as

ut +∇ · (u~V ) = −K(u) + λu, (16)

where λ is chosen so that
∫

Ω
u is a constant M . Or, as we can compute,

λ =

∫
Ω
K(u)

M
= −1

ε

∫
Ω
f(u)

M
. (17)
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These three equations are the main focus of this paper. From now on we call them the
advective Cahn-Hilliard equation, the advective Allen-Cahn equation and the advective
nonlocal Allen-Cahn equation, respectively.

Properties of ~V play an important role here. In papers like [7, 18], the velocity �eld

satis�es a Navier-Stokes equation, thus the velocity �eld ~V is divergent free. In the
situation of our main concern, ~V is not divergent free. The �ow is expanding where
∇ · ~V > 0 and contracting where ∇ · ~V < 0.

Unlike their nonadvective counterpart, mass conservation is not automatically satis�ed
in these advective equations. For example, if we integrate (13), we would have

(

∫
Ω

u)t +

∫
∂Ω

u~V · ~n =

∫
∂Ω

∇K(u) · ~n. (18)

Under Neumann boundary condition, the right hand side become 0. Only when we exert
a no-�ow condition ~V · ~n = 0 on the boundary can we have mass conservation. In fact,
this no-�ow condition would simplify many proofs below. We assume this is satis�ed by
having a small layer of ~V that vanishes near the boundary. We also assume ~V is smooth
enough in the following arguments.

3 Property of the advective Cahn-Hilliard equation

In this section we prove basic properties of the advective Cahn-Hilliard equation. We
begin with the existence and uniqueness property of the equation, then move on to the
analysis of the breakup condition.

3.1 Existence and uniqueness

The following existence and uniqueness theorem is similar to that of the original Cahn-
Hilliard equation [31]. In the proof below and related arguments, the symbol C denotes
a generic constant.

Theorem 3.1 If g(u) in (4) is a polynomial of order 2p, for every given u0 in L
2(Ω), the

equation (13) with u(0) = u0 has a unique solution u that belongs to C([0, T ];L2(Ω)) ∩
L2(0, T ;H2

0 Ω) ∩ L2p(0, T ;L2p(Ω)),∀T > 0.

The proof for this theorem follows the same step as the Galerkin method for proving
other equations like the Navier-Stokes equation and original Cahn-Hilliard equation, with
the only di�erence in the a priori estimate. See [32, 31]. We only present the di�erent a
priori estimates here.
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The weak form of (13) is

(u′(t), w) + εA(u,w) +B(~V , u, w) +
1

ε
(f ′(u)∇u,∇w) = 0,∀w ∈ H2(Ω), (19)

where A(u,w) = (∆u,∆w), B(~V , u, w) =
∫

Ω
∇ · (u~V )w.

Taking w = u we have

1

2

d

dt
|u|2 + ε|∆u|2 +

1

ε
(f ′(u)∇u,∇u) +

1

2
(|u|2,∇ · ~V ) = 0. (20)

Since f ′(s) ≥ b2ps
2p−2 − C,

1

2

d

dt
|u|2 + ε|∆u|2 +

1

ε

∫
Ω

(b2pu
2p−2|∇u|2) ≤ C|∇u|2 +

C

2
|u|2. (21)

Thus we can get the upper bound for u in L2(0, T ;H2(Ω)). To get the upper bound of u
in L∞(0, T ;L2(Ω)), we see that

C|∇u|2 ≤ C|u| ‖u‖H2(Ω)

≤ C|u|(|∆u|+M)

≤ ε

2
|∆u|2 + C|u|2 + CM2,

(22)

where M =
∫

Ω
u is the total mass. Thus,

d

dt
|u|2 + ε|∆u|2 +

∫
Ω

(b2pu
2p−2|∇u|2) ≤ C|u|2 + CM2. (23)

The rest of the proof are similar to [32, 31]. By using the Gronwall inequality we get an
upper bound for u in L∞(0, T ;L2(Ω)). This su�ces to show the continuity and uniqueness.

3.2 Energy estimate

The original Cahn-Hilliard equation has an energy term that serves as a Lyapunov func-
tion:

J(u) =

∫
Ω

ε

2
|∇u|2 +

1

ε
g(u). (24)

This term can be estimated by multiplying K(u) on both sides of (13) then integrate by
parts. Following the same pattern, we get

J(u)t + (∇ · (u~V ), K(u)) = −|∇K(u)|2. (25)

We can estimate the new term by

(∇ · (u~V ), K(u)) = (~V · ∇u,K(u)) + ((∇ · ~V )u,K(u)). (26)
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The �rst term

(~V · ∇u,K(u)) = −(∇ · ~V , ε
2
|∇u|2 +

1

ε
g(u))− ε

∫
Ω

(∇u)T∇~V∇u, (27)

due to the fact that∫
Ω

~V · ∇u∆u =

∫
Ω

~V · (∇ · (∇u⊗∇u)− 1

2
∇(|∇u|2))

=

∫
Ω

−∇~V : (∇u⊗∇u) +
1

2
∇ · ~V |∇u|2

=

∫
Ω

−(∇u)T∇~V∇u+
1

2
∇ · ~V |∇u|2.

(28)

The right-hand side of (27) is bounded from below by −2||∇~V ||L∞J(u).

The second term of (26) is bounded by

((∇ · ~V )u,K(u)) ≥ −ε(1

2

∫
u2∆∇ · ~V −

∫
|∇u|2∇ · ~V )− ||∇ ·

~V ||L∞
ε

∫
|uf(u)|

≥ −C(J(u) + |u|22).

(29)

Putting everything together, we have

J(u)t ≤ C(J(U) + |u|22), (30)

which, using Gronwall's inequality and the bound of |u|22 above gives

J(u)t ≤ exp(Ct)J(u0) + C. (31)

We can see that, the energy of u is bounded at every �nite time interval [0, T ] and increases
at most exponentially.

3.3 Droplet breakup

When the the external �ow �eld is su�ciently large, the advective Cahn-Hilliard model
exhibits droplet breakup as illustrated in Fig. 1. Similar phenomenon have been observed
in numerous reaction-di�usion systems, see for example [24], [20], [17] and references
therein. In this section we perform a detailed study of the breakup phenomenon for the
advective Cahn-Hilliard model in one dimension. We recall that the one dimensional case
of (13) is:

ut + (V (x)u)x = Kxx; K = −εu′′ + 1

ε
f(u). (32)

We choose a speci�c form of f(u) in our discussion:

f(u) = 2u(1− u)(1− 2u). (33)

Other forms of f(u) follow a similar discussion. In [24], Nishiura and Ueyema pro-
posed a set of conditions for the occurrence of self-replication in reaction-di�usion models.
Roughly stated, they are are:
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1. The disappearance of the steady state due to a fold-point (or saddle-node) bifurca-
tion.

2. The existence of the so-called dimple-eigenfunction at the threshold, which is re-
sponsible for the initiation of the breakup process.

3. The steady state is stable on one side of the fold point and is unstable on the other.

The importance of these conditions is that the breakup of a droplet can be understood
in terms of the analysis of the steady state solution of (32) which satis�es

(V (x)u)x = Kxx; K = −εu′′ + 1

ε
f(u). (34)

The breakup analysis for (32) is very similar to [20] where the Brusselator and other
reaction-di�usion systems having mesa-type structures were shown to exhibit self-replication.
For simplicity, we will only consider a special case

V (x) =
V0

ε
x, (35)

and get the following asymptotic result:

Result 3.2 Consider (32) in the limit ε � 1, with V (x) given by (35), and with even
initial conditions for u. For a given mass M =

∫∞
−∞ udx, let

Vc =
Vc0
M2

(36)

where Vc0 ≈ 1.326 is a constant whose precise value is given below in (49). If V < Vc
then there exists a steady state u(x, t) = u(x) in the form of a droplet. If V > Vc, no such
steady state exists. As V is slowly increased past Vc, the dropet will split in the middle
and breakup into two droplets.

The derivation of this result consists of an analytic veri�cation of the Nishiura-Ueyema
conditions 1 and 2. Due to space limitations, we omit the veri�cation of Condition 3 but
refer the reader to [20] where this condition 3 is proved for a similar model.

Veri�cation of Nishiura-Ueyema condition 1. We seek a steady state solution
u(x) which is even. It then follows that K is also even and upon integrating (34) on the
interval [0, x], we obtain

Kx =
V0

ε
xu.

We now change variables K = 1
ε
w to obtain a system

wx = V0xu; −ε2uxx + f(u) = w. (37)
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Figure 1: Snapshots of temporal dynamics of (34) with V given by (35). Here, ε = 0.01
and the mass of the droplet is taken to be M =

∫∞
−∞ udx = 0.8. The parameter V0 is

slowly increased in time according to the formula V0 = 0.001t.

Since we assumed that u is even, we consider only the half-line x ≥ 0; the boundary
conditions become

u′(0) = 0 = u′(∞);

∫ ∞
0

u = M/2 (38)

where M is a given total mass of u. Since the time-dependent PDE (32) conserves the
mass of u, M is also the initial mass of u(x, t) at t = 0.

We will construct a solution to (37, 38) for which u(x) has a sharp interface located
at some position x = l > 0 with u ∼ 0 for x > l. Some typical such pro�les for u(x) are
shown in Fig. 2. Such a solution has a transition layer consisting of the interface near
x = l and an outer region to the left of x = l. In the transition layer, we rescale the space
variable

x = l + εy; u(x) = U(y); w(x) = W (y)

to obtain
Wy ∼ ε2V0yU.

To leading order, we have Wy ∼ 0 so that W ∼ W0 is constant. We then obtain an ODE
for U,

Uyy + f(U)−W0 = 0. (39)

The interface corresponds to a heteroclinic orbit of the ODE (39) which connects the two

saddle equilibria of (39). Such heteroclinic connection exists if and only if
∫ U+

U−
[f(U)−W0] dU =

0, where U± are the equilibria points that satisfy f(U±) − W0 = 0 with U+ 6= U−.
Using f(u) = 2u(1 − u)(1 − 2u), this yields U+ = 1, U− = 0 and W0 = 0; the explicit
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Figure 2: The bifurcation structure of the the steady state equations (37,38) with ε =
0.01, M = 0.8; V0 is plotted vs. u(0). Solid curve represents the solution to the full
system numerically; the dotted curve is the asymptotic formula (47). The coordinates of
the fold point are u(0) = 0.79, V0 = 2.18. The inserts show the pro�le of u(x) for selected
points along the bifurcation curve as indicated.

solution for U(y) is then given by

U(y) =
1

2

(
1− tanh(y/

√
2)
)

with
U(+∞) = 0; U(−∞) = 1.

In the outer region away from the interface, to leading order we have

f(u) ∼ w, 0 ≤ x < l. (40)

Substituting (40) into (37) we then obtain

du

dx
= xV0

u

f ′(u)
; u(l) = 1. (41)

The boundary condition is obtained from matching to the outer solution, u(l) = U(−∞) =
1. The solution to (41) is given by

V0

2
x2 =

∫ u

u0

f ′(s)

s
ds; x < l (42)
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where u0 = u(0). Thus we obtain the following relationship between l and u0,

V0

2
l2 = G(u0) (43)

where

G(u0) :=

∫ 1

u0

f ′(s)

s
ds = −6u2

0 + 12u0 − 2 lnu0 − 6.

It remains to relate l to M. Since u ∼ 0 to the right of the interface, the mass of u is
asymptotically given by

M

2
∼
∫ l

0

u(x)dx (44)

where we ignored the O(ε) contribution to the mass from the interface. Writing (42) as

x2 =
2

V0

(G(u0)−G(u))

and substituting into (44) we obtain

M

2
∼
(

2

V0

)1/2 ∫ 1

u0

u
d

du

√
G(u0)−G(u)du (45)

∼
(

2

V0

)1/2{√
G(u0)−

∫ 1

u0

√
G(u0)−G(u)du

}
. (46)

so that

V0 ∼
1

M2
8

(√
G(u0)−

∫ 1

u0

√
G(u0)−G(u)du

)2

. (47)

Next, note that G(1) = 0 and G′(u0) = −f ′(u0)/u0; in particular G(u0) attains a maxi-
mum at um which satis�es f ′(um) = 0:

um :=
3 +
√

3

6
= 0.78868. (48)

It follows that the solution to the outer problem (41) only exists if um < u(0) < 1. In
terms of M , the critical threshold for existence is obtained by substituting u0 = um into
(47); namely Vc = Vc0

M2 where the constant Vc0 is given by

Vc0 := 8

(√
G(um)−

∫ 1

um

√
G(um)−G(u)du

)2

≈ 1.32606. (49)

This shows the existence of the fold-point for V0 as given by Result 3.2.

Veri�cation of Nishiura-Ueyema condition 2. Here, we follow closely an analo-
gous derivation in [20]. The key is to demonstrate that when V0 is close to the threshold
value Vc, an additional boundary layer in the shape of an inverted spike forms at the
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Figure 3: Right side: Bifurcation diagram A vs. U(0) for the core problem (59). Solid
curve is the numerical solution to (59); dashed lines represent the asymptotics for large
A as given by (61,60). Left: the solution pro�les with U(0), A as indicated.

center of the droplet. To see this, suppose that V0 is su�ciently close to Vc so that near
x = 0, we may expand

u(x) ∼ um + δu1(x), w ∼ f(um) + δ2w1 + ...; δ � 1. (50)

The small parameter δ will be related to ε below. The equation for w1 then becomes

δ2w1x ∼ V0xum

so that

w1(x) ∼ w1(0) + δ−2V0um
2

x2. (51)

The consistency condition for (51) is that x/δ �∞; this will be satis�ed below. We now
expand in Taylor series

f(u)− w ∼ −w1(0)δ2 − V0um
2

x2 + u2
1

f ′′(um)

2
δ2 (52)

where we recall that f ′(um) = 0. Substituting (51, 52) into (37) we obtain

ε2u1xx − u2
1

f ′′(um)

2
δ2 + w1(0)δ2 +

V0um
2

x2 = 0. (53)

To determine the right scaling for δ, rescale

x = αz, u1(x) = U(z)
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so that (53) becomes

Uzz −
(
f ′′(um)

2

δ2α2

ε2

)
U2 +

(
V0um

2

α4

ε2

)
z2 + w1(0)

δ2

ε2
α2 = 0 (54)

We now choose α, δ so that (54) becomes

Uzz = U2 − z2 − A (55)

i.e.

α := ε1/2

(
V0um

2

)−1/4

; δ := ε1/2

(
V0um

2

)1/4(
f ′′(um)

2

)−1/2

(56)

A :=
2w1(0)

f ′′(um)
. (57)

Matching with the outer solution, in the limit z →∞ we impose the boundary condition
uxxε

2 � 1; or Uzz ∼ 0. Thus the boundary conditions for (55) becomes

Uz(0) = 0; U ∼ z as z →∞. (58)

The equations (55) and (58) together comprise the core problem which fully describes the
growth of the inverted spike at the origin. The scaling α = O(ε1/2) quanti�es the width
of the the core spike in terms of the O(ε) interface width. This core problem is identical
to the core problem for the Brusselator and other reaction-di�usion systems; we refer the
reader to [20] for details. For convenience, we state the main result about (55, 58) as
derived in [20]:

Lemma 3.3 (from [20], Theorem 2) Consider the core problem

Uzz = U2 − z2 − A; Uz(0) = 0; U ∼ z as z →∞. (59)

There exists a constant Ac such that (59) has precisely two monotone solutions for A > Ac
and no monotone solutions when A < Ac.

When A � 1, equation (59) admits two monotone solutions U±(z) with the following
uniform asymptotic expansions:

U+(z) ∼
√
A+ z2, with U+ (0) ∼

√
A; (60)

U−(z) ∼
√
A+ z2

(
1− 3 sech2

(
A1/2z√

2

))
, with U+ (0) ∼ −2

√
A; (61)

For any monotone solution of (59), let s = U(0) and consider the curve A = A(s).
Then A(s) has a unique (minimum) critical point at s = sc, A = Ac. Moreover, de�ne

Φ(z) =
∂U(z; s)

∂s
|s=sc .

Then Φ (z) > 0 for all z ≥ 0 and Φ → 0 as z → ∞. Numerically, Ac = −1.46638, sc =
−0.61512.

The bifurcation diagram of A vs. U(0) and some steady states is given by Fig. 3.
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Figure 4: The shape of the the eigenfunction corresponding to the zero eigenvalue at the
fold point of the bifurcation diagram for (37,38) with ε = 0.01, M = 0.8. The parameter
V0 = 2.18 is chosen to be at the fold point.

In particular, the pro�le U− describes the shape of the �nger within the boundary
layer at the center of the droplet, which is responsible for the initiation of the splitting
process. Similarly as was shown in [20], the linearized problem at the fold point has a
zero eigenvalue; the corresponding eigenfunction is given by φ = ∂u/∂ [u(0)]. Moreover,∫
φ = 0 due to mass conservation. As explained in [20], it follows from Lemma 3.3 that φ

has precisely one positive root; its pro�le is shown in Fig. 4. This proves that criterium
2 of Nishiura-Ueyema conditions is satis�ed. This concludes the derivation of our result.

We use two methods to verify the droplet breakup condition from Result 3.2. We take
ε = 0.01 and we let V0 to be a slowly varying parameter in time, according to the formula
V0 = 0.001t. Using the initial condition

u(x, 0) =
1

2

(
1− tanh

(
|x| − 0.4

0.01
√

2

))
(62)

we then compute numerically the solution to the full system (13). Droplet breakup is
observed at about t = 1982 or V0 ≈ 1.982 as shown in Fig. 1. The initial conditions (62)
correspond to M = 0.8. The formula (36) for Vc then yields Vc = 1.32606

0.82
= 2.07, which

compares favorably with the numerical result.

Next, we computed the bifurcation diagram of the steady state (37, 38); this is shown in
Fig. 2. To compute such diagram, we gradually changed u(0) from 1 down to 0.5; then for
each given u(0), we used Maple's numerical boundary value problem solver to compute for
the corresponding value of V0. In this way, the fold point was found at u(0) = 0.79, with
the corresponding V0 = 2.18. This agrees very well with the asymptotic result Vc = 2.07
as well as (48) um = 0.7887.

4 Property of the advective Allen-Cahn equation

In this section we prove the existence, uniqueness and maximum principles for the advec-
tive Allen-Cahn equation and the advective nonlocal Allen-Cahn equation. The maximum
principle shows that the droplet breakup will not appear in many cases.
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4.1 Existence and uniqueness

The existence and uniqueness for the advective Allen-Cahn equation can be done similarly
to that of the advective Cahn-Hilliard equation. However, a di�erent method has to be
used for the advective nonlocal Allen-Cahn equation with mass conservation due to the
extra nonlocal term. A semigroup method is used to show �nite time existence of the
solution, then a maximum principle analysis gives the bound of the λ in the non-local
term.

Theorem 4.1 For dimension n = 1, 2, 3, if g(u) in (4) is a polynomial of order 2p. then

(15) and (16) with initial value u0 ∈ W
3
2
,2(Ω) has a unique solution u ∈ C1([0, T ];C2(Ω)),

∀T > 0.

The proof contains two parts. The �rst part follows a similar process that is used in
[3, 15], which involves using the following propositions from them.

Proposition 4.2 Consider the equation

ut = Au+N(u) (63)

where A is the generator of a holomorphic semigroup S(t) of bounded linear operators on
a Banach space X. Suppose that ||S(t)|| ≤ M0 for some constant M0 > 0 for all t > 0.
Under these hypotheses the fractional powers (−A)−α can be de�ned for 0 ≤ α < 1 and
(−A)α is a closed linear operator with domain Xα =Domain((−A)α) dense in X. Let N(u)
be locally Lipschitz, i.e. for each bounded subset of U there exists a constant CU such that

||N(u1)−N(u2)|| ≤ CU ||u1 − u2||α,∀u, v ∈ U, (64)

then given u0 ∈ X, there exists a �nite time interval [0, t) and a unique solution u with
u(0) = u0 on the time interval and the solution can be continued uniquely on a maximal
interval of existence [0, T ∗). Moreover, if T ∗ <∞ then limt→T ∗ ||u(t)||α =∞.

Proposition 4.3 Assume A and N same as above, suppose u is a solution of the equation
on (0, T ], then if γ < 1, t → ut(t) ∈ Xγ is locally Holder continuous for t ∈ (0, T ], with
||ut||α ≤ Ctα−γ−1.

Lemma 4.4 Assume A and N same as above, if ||N(u)|| ≤ C(t)(1 + ||u||α), then the
unique solution exists for all times.

In (16), we can take A = ε∆ on domain of H2(Ω) functions with Neumann boundary
condition, 1 > α > 3

4
, X = L2(Ω) and

N(u) = −∇ · (u~V )− 1

ε
f(u) + λu. (65)
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We have Xα ⊃ W
3
2
,2(Ω)∩L∞(Ω). Thus, we can estimate the three terms of N(u1)−N(u2)

individually.

||∇ · (u1
~V )−∇ · (u2

~V )||L2 ≤ ||~V ||L∞ ||∇u1 −∇u2||L2 + ||∇ · ~V ||L∞||u1 − u2||L2

≤ C||u1 − u2||H1

≤ C||u1 − u2||Xα .

(66)

Since f is a polynomial of order 2p− 1 we have

f(u1)− f(u2) = (u1 − u2)h(u1, u2), (67)

where h is a polynomial of order 2p− 2.

||f(u1)− f(u2)||L2 ≤ ||u1 − u2||L2||h(u1, u2)||L∞
≤ C||u1 − u2||L2(||u1||2p−2

L∞ + ||u2||2p−2
L∞ )

≤ C||u1 − u2||Xα(||u1||2p−1
Xα + ||u2||2p−1

Xα ),

(68)

and

||u1

∫
Ω

f(u1)− u2

∫
Ω

f(u2)||L2

≤ ||u1||L2||f(u1)− f(u2)||L1 + ||u1 − u2||L2||f(u2)||L1

≤ ||u1 − u2||L1||u1||L2||h(u1, u2)||L∞ + C||u1 − u2||L2||u2||2p−1
L2p−1

≤ C||u1 − u2||Xα||u1||L∞(||u1||2p−2
L∞ + ||u2||2p−2

L∞ ) + C||u1 − u2||Xα||u2||2p−1
L∞

≤ C||u1 − u2||Xα||(||u1||2p−1
Xα + ||u2||2p−1

Xα ).

(69)

We can apply proposition 4.2 from here and get a unique solution in u ∈ D(A). Then, since
∇u ∈ W 1,2(Ω) ⊂ L6(Ω), we have Au = N(u)− du

dt
∈ L6(Ω). This implies ∇u ∈ W 1,6(Ω),

which is Holder continuous. This in turn shows u ∈ C2+δ(Ω) for some δ > 0. The local
Lipschitz condition for (15) is similar.

This proposition shows a maximum interval of existence [0, Tmax) for the advective
Allen-Cahn equations. To show global existence, we need maximum principle below to
show a bound for λ and f(u), then we can directly apply lemma 4.4 using the fact of

||∇ · (u~V )||L2 ≤ C||u||H1 ≤ C||u||Xα . (70)

4.2 Maximum principle analysis

The maximum principle-like analysis works only for the advective Allen-Cahn equation,
since it is second-order and parabolic. The advective Cahn-Hilliard equation, on the other
hand, is of fourth-order thus does not possess the maximum principle.

16



Theorem 4.5 For equation (15) with any velocity �eld, or (16) with expanding �ow

∇ · ~V ≥ 0, there exists a value uM such that, if initial value u0(x) ∈ [0, uM ] in Ω and
satis�es the condition of theorem 4.1, then u(x, t) ∈ [0, uM ] for all t. For (16) with a

general �ow, 0 ≤ u(x, t) ≤ max(exp(− inf(∇ · ~V )t), 1)uM .

If we set û(x, t) = expξt u(x, t), then (15) becomes

ût = expξt(ε∆u−∇u · ~V − u∇ · ~V − 1

ε
f(u) + ξu), (71)

and (16) becomes

ût = expξt(ε∆u−∇u · ~V − u∇ · ~V − 1

ε
f(u)− λu+ ξu). (72)

For the advective Allen-Cahn equation (15), we can simply take ξ close to 0. Since
g(u) is a double-well potential, f(u) < 0 when u < 0. We can deduce that there is no
interior negative minima. Similarly, there is no interior maxima larger than 1. Thus, if
the initial value is within [0,1], so is the solution.

For the advective nonlocal Allen-Cahn equation (16), it becomes a little complicated.
Within any time interval [0,T], λ is bounded, so we can take a proper ξ in (72) to use the
maximum principle. Thus, û has no negative minima within any interval (0,T]. If initial
value is nonnegative, so is the solution.

The positive side is more tricky. If u takes its maximum value umax on the interior and
∇ · ~V ≥ 0, then on the point we have 1

ε
f(umax) + λumax < 0. On the other hand, due to

the de�nition of λ (17), we know that λ = −1
ε
f(u)
u

for some u ∈ [0, umax]. This means that
f(umax)
umax

< f(u)
u

for some u ∈ [0, umax]. Since f(u)
u

is even-ordered polynomial, there exists

an uM > 0 so that f(umax)
umax

≥ f(u)
u

for all umax ≥ uM and u ≤ umax. Thus, if the initial
value is smaller than uM , so is the solution. For example, if we take double-well potential
g(u) = u2(1 − u)2, then uM = 1.5. For a general �ow, we take ξ = inf(∇ · ~V ) in (72).
With a similar analysis, u ≤ uM when û takes its maximum, hence the result.

For the advective Cahn-Hilliard equation (13), the maximum principle analysis does
not work. In fact, there are cases when it fails: the solution becomes negative even when
the initial value is not. See numerical results Fig. 7, Fig. 15 and Fig. 17.

In the simple 1D case, we can show the following fact:

Theorem 4.6 If u satis�es (15) or (16), u(x, 0) ≥ 0 and bounded, and ux(x, 0) ≤ 0 on
Ω, and Vxx(x) ≥ 0, then ux(x, t) ≤ 0 for all t.

Note that, if we expect a symmetric condition, i.e. V is odd and u is even, and u(x, 0)
takes its only maximum value at x = 0, then ux(0, t) = 0, and we can apply this theorem
on Ω∩ [0,∞). Thus for any t, u(x, t) takes the maximum value at x = 0, and the droplet
breakup does not occur.
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To prove this, we see that (15) leads to

(ux)t = (ux)xx − V (ux)x − (2Vx + f ′(u))ux − Vxxu, (73)

and (16) leads to

(ux)t = (ux)xx − V (ux)x − (2Vx + f ′(u) + λ)ux − Vxxu. (74)

Since 2Vx + f ′(u) and λ are bounded, Vxxu ≥ 0, we can use a process similar as above
to show that no positive maximum can be achieved in the interior of Ω. Thus ux(x, t) ≤ 0
for all t. When Vxx is not nonnegative, breakup may occur. See Fig. 13 and Fig. 14.

In higher dimensions, it is easy to consider the case of radially symmetric data. General
results require a more detailed analysis, but this analysis is su�ce to show that Allen-Cahn
type equation is unsuitable for the model of droplet breakup.

Theorem 4.7 If u satis�es (15) or (16) on a n-dimensional sphere around 0, u(~x, 0) ≥
0, bounded and radially symmetric, and ur(~x, 0) ≤ 0 on Ω, where ur is the directional

derivative of u in the direction of ~x. Assume ~V (~x) = V (|~x|) ~x
|~x| and r2Vrr(r) + (n −

1)rVr(r)− (n− 1)V (r) ≥ 0 for any r, then ur(~x, t) ≤ 0 for all t.

We can prove this by taking w = rn−1ur, then (15) gives

wt = wrr− (
n− 1

r
−V )wr− (2Vr + f ′(u))w− rn−3(r2Vrr + (n− 1)rVr− (n− 1)V )u. (75)

Using the same method as that of 1D case, we can show that no positive maxima exist
under given condition. Thus, w ≥ 0 for all ~x and t, which is equivalent as ur ≥ 0. When
n = 1, the condition on ~V would be the same as the 1D theorem 4.6.

5 Numerical simulation

5.1 Algorithm

In this section we present numerical simulation in 1,2 and 3D. We compare some of the
results with the theory from previous sections. Speci�cally, we focus on di�erent behaviors
when the strength of velocity �eld changes, and di�erent droplet breakup condition for
di�erent models. All our numerical results are consistent with the theories in previous
sections.

The Cahn-Hilliard equation poses numerical challenges due to the sti�ness of both the
4th-order term and the nonlinear term. Thus, many algorithms, both linear and nonlinear,
have been proposed to solve it, for example �nite element method [4], and semi-implicit
discretization [33, 34, 5]. In this paper we apply a simple semi-implicit splitting scheme
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[33] on the fourth-order term of the advective Cahn-Hilliard equation (13). It can be
written as

un+1 − un

∆t
+∇ · (un~V ) = −∆(ε∆(Aun+1 + (1− A)un)− 1

ε
f(un)), (76)

where the advection term is discretized by the upwind scheme. The parameter A is chosen
as 2 in the implementation. (15) and (16) are discretized as

un+1 − un

∆t
+∇ · (un~V ) = ε∆(Aun+1 + (1− A)un)− 1

ε
f(un) (77)

and
un+1 − un

∆t
+∇ · (un~V ) = ε∆(Aun+1 + (1− A)un)− 1

ε
f(un) + λu (78)

respectively.

The stability condition now is related to ~V . For example, the graph of stability of the
advective Cahn-Hilliard equation related to time step ∆t and the maximum norm of ~V is
shown in Fig. 5. ∆x has some insubstantial e�ects on the stability, but not so much as a
CFL condition would require. In fact, the coe�cient of un+1 is I+∆tε∆2, it is in the order
of (∆x)−4 when ∆x is small. This is of a higher order than the advective term ~V · ∇un,
thus providing the main constraint for stability. This stability condition with V = 0 is
consistent with similar results for the plain Cahn-Hilliard equations like [14].Reference [5]
shows that a scheme of this kind would have an error of O(C∆t), but the constant C would

be very large. With the additional advection term, C becomes related to Vmax = ||~V ||L∞ ,
thus when Vmax increases, a smaller time step would be required. Moreover, when ~V is not
very large, the most important constraint on ∆t comes from the stability of the original
Cahn-Hilliard equation.

5.2 1D result: the advective Cahn-Hilliard equation

We begin from the basic 1D case where u(x, 0) = χ[−α,α] and ~V = V0x. The value of
V0 is tuned to show di�erent types of solutions. The parameter ε is taken to be 0.01,
and g(u) = u2(1 − u)2. α is taken as 0.3. We run the simulation on the interval [−5, 5]
with 2048 grid points. The time step is taken to be ∆t = 2× 10−6, with 5000 time steps
in total. The result of the advective Cahn-Hilliard equation (13) contains two di�erent

types of solutions when ~V changes. When ~V is small, the solution develops a dimple in
the middle, then stops, and does not break up further. When ~V is large, the solution
eventually breaks up, and the smaller droplets continue to move apart. See Fig. 6 and
Fig. 7, which correspond to V0 = 400 and V0 = 600 respectively. The threshold value of
V0 is drawn on Fig. 8, depending on the initial size of the droplet. The curve is an inverse
quadratic curve of V0M

2 = 1.326, which �ts the prediction of (36).
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Figure 5: the Stability graph for the 1D advective Cahn-Hilliard equation. The triangle
shape indicate unstable case, the circle represents the stable case. The X-axis and Y-axis
represent the time step ∆t and the maximum value of velocity �eld Vmax respectively.

Figure 6: The advective Cahn-Hilliard equation does not breakup

5.3 1D result: the advective Allen-Cahn equation

As ~V increases, two di�erent types of result appear for (15). When ~V is small, the solution

develops towards a constant given by the solution of V0u + 1
ε
f(u) = 0. When ~V is large
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Figure 7: The advective Cahn-Hilliard equation breakup

Table 1: Threshold for the advective nonlocal Allen-Cahn

Value of α Threshold of V0

0.5 7
0.2 18

and the above equation does not have a solution, the solution expands and decreases
towards zero. The threshold is not related to α at all. See Fig. 9 and Fig. 10. Most
numerical parameters are the same as that of the Cahn-Hilliard case: α is taken as 0.3,
the simulation is on the interval [−5, 5] with 2048 grid points. The di�erence is in the
time step and the strength of velocity �eld. In the graphs shown, the ∆t = 0.001, and
the values of V0 are 10.0 and 30.0 respectively.

5.4 1D result: the advective nonlocal Allen-Cahn equation

Under the same setting, the advective nonlocal Allen-Cahn equation (16) has two di�erent
types of results when V0 changes. The threshold value of V0 is listed on Table 1. When
Ω is smaller, these two thresholds also decrease. When ~V is small, the solution decreases
and settles into a non-constant steady state depicting a single droplet. When ~V is large,
the solution decays to a small constant consistent with mass conservation. See Fig. 11
and Fig. 12. The numerical parameters are the same as in the previous subsection. α
is taken as 0.3. The simulation is on interval [−5, 5] with 2048 grid points. Time step
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Figure 8: Threshold for Cahn-Hilliard. Dot is simulation data, line is an inverse quadratic
curve V0M

2 = 1.326.

∆t = 0.001, and the values of V0 in the results shown are 10.0 and 30.0 respectively.

This represents a typical Allen-Cahn solution that does not show droplet breakup. The
reason comes from the maximum principle, which was explained in Theorem 4.5. However,
if the initial value is non-monotone, things become di�erent. Even a small concavity at the
origin leads to a completely di�erent evolution. In Fig. 13 we take ~V (x) = 5x, but initial
value is taken as 1 in [−0.5,−0.01) ∪ (0.01, 0.5], 0.99 in [−0.01, 0.01], and 0 otherwise.
The solution shows a breakup.

Another situation of droplet breakup involves a di�erent velocity �eld ~V . Fig. 14 is
the result for the case when V = V0(x − 1

100
x2) where x ≥ 0 and expanded as an odd

function to x < 0. Note that this velocity �eld does not satisfy the condition of theorem
4.6. See Fig. 14.
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Figure 9: The advective Allen-Cahn equation when V is small

Figure 10: The advective Allen-Cahn equation when V is large

5.5 2D result

Since the 1D case shows interesting results, it is natural to perform simulations in higher
dimensions where we have additional geometry. We tried two di�erent cases for 2D result,
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Figure 11: The advective nonlocal Allen-Cahn equation when V is small

Figure 12: The advective nonlocal Allen-Cahn equation when V is large

respectively under an expanding velocity �eld and a sheer �ow. The velocity �eld is
prescribed as

~V (x, y) = (V0x, V0y) (79)

for the expanding case, and
~V (x, y) = (0,−V0x) (80)

for the sheer �ow. The advective Cahn-Hilliard equation and the advective nonlocal Allen-
Cahn equation are both tested for these cases. For all cases, we solve the equation in the
region [−1, 1]× [−1, 1] with 128×128 mesh size. For the expanding �ow, we test two cases
with di�erent initial values. The initial value for the �rst case is 1 on [−0.3, 0.3]×[−0.3, 0.3]
and 0 otherwise. In the second case the initial value is 1 on a circle of radius 0.3 and
0 otherwise. For the sheer �ow, the initial value is 1 on [−0.1, 0.1] × [−0.1, 0.1] and

24



Figure 13: The advective nonlocal Allen-Cahn equation when the initial value have an
insubstantial dent near the origin

Figure 14: The advective nonlocal Allen-Cahn equation when V is not linear

0 otherwise. V0 is 2000 for all the advective Cahn-Hilliard equation cases and 10 for
all the advective nonlocal Allen-Cahn equation cases. Time step is 1 × 10−6 for the
advective Cahn-Hilliard equation and 1 × 10−4 for the advective Allen-Cahn equation.
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These parameters are chosen to emphasize the di�erence in their breakup phenomena, see
Fig. 15 to Fig. 20.

Similar to the 1D case, the advective Cahn-Hilliard equation has a droplet breakup,
while the advective nonlocal Allen-Cahn equation does not. Comparatively, the Cahn-
Hilliard model show a surface tension based breakup while Allen-Cahn model fails to do
so in all cases.

5.6 3D result

For the 3D case, we used a parallel machine in the National Energy Research Scienti�c
Computing Center (NERSC) to solve the problem. Due to the complexity of the problem,
an operator splitting scheme is used. Instead of solving (76) directly, every time step is
split into an advection step

u∗ − un

∆t
+∇ · (un~V ) = 0, (81)

and Cahn-Hilliard (or Allen-Cahn, respectively) step

un+1 − u∗

∆t
= −ν∆(ε∆(Aun+1 + (1− A)u∗)− 1

ε
f(u∗)). (82)

The operator splitting and advection step are done by an ALE-AMR code [21]. The
Cahn-Hilliard step is solved by a speci�cally written �nite element package.

The simulation is run on a [0, 1]3 grid, with initial value being 1 on [0.35, 0.65]3 and 0
elsewhere. ε is still 0.01. The velocity �eld is prescribed as

~V (x, y, z) = (V0(x− 0.5), V0(y − 0.5), V0(z − 0.5)). (83)

where V0 = 1.0. The time step is chosen adaptively by the ALE-AMR code. and the
simulation shown is from time 0 to 1. The value of ν is 1× 10−4 for all cases.

The advective Cahn-Hilliard have a droplet breakup similar to that of 2D case. The
advective nonlocal Allen-Cahn equation simply performs a droplet expansion and then
merge into the background or stop expanding, depending on the velocity �eld and droplet
size. See Fig. 21 and Fig. 22.

5.7 Noise

The advective Allen-Cahn equation is more susceptible to noise compared to the advective
Cahn-Hilliard equation. For the advective Allen-Cahn equation, even small noise in the
initial value would lead to totally di�erent behavior. However, the advective Cahn-Hilliard
equation requires much stronger noise, or noise over time to make the result change. With
strong enough noise, the droplet breakup shows some irregularity and breaks symmetry.
Fig. 23 and 24 have the same setting as Fig. 15 and 16, except for a Gaussian noise
of strength 0.01 added on the initial value. Fig. 25 and 26, on the other hand, adds a
Gaussian noise every time step.
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Figure 15: The advective Cahn-Hilliard equation breakup under a 2D expanding �ow
with a square initial value

Figure 16: The advective nonlocal Allen-Cahn equation result under a 2D expanding �ow
with a square initial value
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Figure 17: The advective Cahn-Hilliard equation breakup under a 2D expanding �ow
with radially symmetric initial value

Figure 18: The advective nonlocal Allen-Cahn equation result under a 2D expanding �ow
with radially symmetric initial value
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Figure 19: The advective Cahn-Hilliard equation breakup under a 2D sheer �ow

Figure 20: The advective nonlocal Allen-Cahn equation result under a 2D sheer �ow
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Figure 21: The advective Cahn-Hilliard equation breakup under a 3D expanding �ow

Figure 22: The advective nonlocal Allen-Cahn equation's result under a 3D expanding
�ow
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Figure 23: The advective Cahn-Hilliard equation breakup under a 2D expanding �ow
with noise of strength 0.01 in the initial value. It has a similar structure to that without
noise.

Figure 24: The advective nonlocal Allen-Cahn equation breakup under a 2D expanding
�ow with noise of strength 0.01 in the initial value. Without noise, it will not break up.
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Figure 25: The advective Cahn-Hilliard equation breakup under a 2D expanding �ow
with continual noise over time. Symmetry is broken under this noise strength.

Figure 26: The advective Cahn-Hilliard breakup under a 3D expanding �ow with continual
noise over time. Symmetry is broken under this noise strength.
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6 Conclusion

In this paper we focus on the properties and numerical simulation of the Cahn-Hilliard
and Allen-Cahn equations with advection of a prescribed compressible �ow. We have
shown existence and uniqueness properties, and breakup conditions for both equations.
For the advective Cahn-Hilliard equation, the droplet breakup condition is studied using
a formal asymptotic analysis. It will happen when velocity �eld is large enough, and the
threshold strength varies inverse quadratically with droplet size. For the advective Allen-
Cahn equation, the breakup condition is studied using a maximum principle analysis. It
will not happen without some kind of perturbation. Numerical results are provided in
one, two and three space dimensions, with various initial conditions and di�erent kinds of
background �ow. We also test numerical simulations with noise. The theoretical breakup
condition �ts well with the numerical condition.

Eventually we need to simulate the droplet breakup phenomenon with surface tension.
Thus for the future work, it is necessary to couple this model with other compressible
�uid models. It is important to consider the impact of the phase �eld variable back to
the velocity �eld itself, and see how this model works within the full problem.
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