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An analysis is undertaken of the formation and stability of localised patterns in a 1D Schanckenberg
model, with source terms in both the activator and inhibitor fields. The aim is to illustrate the connec-
tion between semi-strong asymptotic analysis and the theory of localised pattern formation within a
pinning region created by a subcritical Turing bifurcation. A two-parameter bifurcation diagram of
homogeneous, periodic and localised patterns is obtained numerically. A natural asymptotic scaling
for semi-strong interaction theory is found where an activator source term a =O(ε) and the inhibitor
source b =O(ε2), with ε2 being the diffusion ratio. The theory predicts a fold of spike solutions lead-
ing to onset of localised patterns upon increase of b from zero. Non-local eigenvalue arguments show
that both branches emanating from the fold are unstable, with the higher intensity branch becoming
stable through a Hopf bifurcation as b increases beyond the O(ε) regime. All analytical results are
found to agree with numerics. In particular, the asymptotic expression for the fold is found to be
accurate beyond its region of validity, and its extension into the pinning region is found to form the
low b boundary of the so-called homoclinic snaking region. Further numerical results point to both
sub and supercritical Hopf bifurcation and novel spikeinsertion dynamics.
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1 Introduction

Since the pioneering work of Alan Turing [28], there has been significant interest in the theory of
pattern formation in reaction diffusion systems. Various canonical models of activator inhibitor
type have been proposed, such as those due to Gierer & Meinhardt [9] and Schnakenberg [24],
that have been found to replicate spatio-temporal behaviour across the natural world. Indeed, the
Turing theory of pattern formation is now a core topic within mathematical biology; see, e.g. the
books by Murray and Meron [21, 18]. Turing instabilities describe the onset of small-amplitude
periodic patterns. More recent theories using either formal semi-strong asymptotic expansions
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2 F. Al Saadi et al.

(see, e.g. [19, 20, 11, 30, 12, 17] and references therein) or geometric singular perturbation theory
(see, e.g. [7, 8] and references therein) have led to theories showing existence and dynamics of
more complex, large amplitude patterns.

In recent years, there has been a parallel interest in the formation and dynamics of spatially
localised patterns in systems described by higher order scalar equations such as generalisations
of the Swift-Hohenberg model [27]. The theory relies on the formation of localised states of
arbitrarily wide spatial extent within the Pomeau [22] pinning region due to the phenomenon
known as homoclinic snaking [33, 5, 2]. See, for example, the reviews by Knobloch [13, 14].

The aim of this paper is to show how these two theoretical paradigms fit together by studying a
variant of Schnakenberg model in one spatial dimension with source terms in both activator and
inhibitor fields. In particular, we aim to show how the semi-strong asymptotic analysis applied
in the limit of an infinite domain can show the onset of large amplitude exponentially localised
patterns through a fold bifurcation. Here, semi-strong implies a scaling where the activator field
is much more highly localised than the inhibitor. When this fold is followed numerically into a
different pattern regime, we find that it forms the extremity of the homoclinic snaking region.
Moreover, the semi-strong limit allows for analysis of the stability of the localised patterns. By
introducing a small parameter τ associated with the timescale of the inhibitor field, we are able
to appeal to the theory of non-local eigenvalue problems. This theory can then be extended to
argue the existence of a temporal Hopf bifurcation as one passes from the snaking regime to the
semi-strong limit.

The rest of this paper is outlined as follows. Section 2 presents the system under investigation,
the stability of its homogeneous state and a numerical overview of regions of existence of peri-
odic and localised patterns. Section 3 then considers the adaptation of semi-strong asymptotic
theory to show existence of localised patterns on an infinite domain. Section 4 considers stability
analysis of the localised patterns using non-local eigenvalue problem theory. In both Sections 3
and 4, the theory is shown to agree well with numerics. Finally, Section 5 draws conclusions and
points to the wider implications of the work.

2 The Schnakenberg model and its underlying dynamics

The model in question was first proposed in [24] and has many applications in biology; see,
e.g. [3, 25] and references therein. The equations describe an autocatalytic reaction between two
chemical products X , Y and two sources A and B as follows:

U <=> A, B → V , 2U + V → 3U .

The reaction takes place in a closed domain, such that the activator U and inhibitor V are free
to diffuse in one spatial dimension, across a domain of size 2l, and that the sources A and B
are abundant everywhere and do not diffuse. Applying the law of mass action, then after non-
dimensionalisation, one can obtain the following system of reaction diffusion equations:

∂u

∂t
= a − u + u2v + ε2 ∂

2u

∂x2
, −l< x< l, t> 0 (2.1a)

∂v

∂t
= b − u2v+ ∂2v

∂x2
, −l< x< l, t> 0 (2.1b)

ux(±l, t) = vx(±l, t) = 0. (2.1c)
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Spikes and localised patterns for a novel Schnakenberg model 3

Here u and v represent the activator and the inhibitor concentration, respectively, and the parame-
ters a, b> 0 are the respective constant concentrations of A and B. The dimensionless parameter
ε > 0 measures the ratio of the diffusion rate of the activator to that of the inhibitor. In what
follows we shall be interested in the case that 0< ε� 1 and in the limit of an infinitely long
domain l → ∞.

Upon setting the diffusion terms in (2.1) to zero, a straightforward calculation shows there is
a unique homogeneous equilibrium:

(us, vs) =
(

a + b,
b

(a + b)2

)
. (2.2)

Standard linear stability analysis around (2.2) gives conditions for a pattern formation, or Turing
instability with wavenumber k ∈R. Specifically, substitution of the ansatz

(u, v) = (us, vs) + (Ū , V̄ )eikx+λt, with ||Ū , V̄ || � 1.

into (2.1), after, excluding nonlinear terms, gives a condition for the loss of stability under
variation of a parameter:

�(λ(kc)) = 0, and �(∂kλ(kc)) = 0.

Here, λ is the temporal eigenvalue of (2.2) and kc is the critical value of the wavenumber.
Proceeding in the usual way, we obtain the condition for Turing instability and the critical wave
number as

b − (a + b)3 ε2 − a = 2 (a + b)2 ε, (2.3)

k2
c = − (a + b)3 ε2 − a + b

2ε2 (a + b)
.

As argued, for example, in [4], the above conditions for a temporal Turing bifurcation can
be interpreted as a so-called Hamiltonian–Hopf bifurcation in terms of spatial dynamics (that is
when the time-independent problem is posed on the infinite domain and the spatial variable x
is considered to be time-like, see, e.g. [10]). Another linear transition we shall be interested in
is when the far field of the purely spatial problem posed around the homogeneous equilibrium
switches from having monotone to oscillatory decay. Such a Belyakov–Devaney (BD) transi-
tion occurs whenever there is a pair of double real eigenvalues of the spatial dynamics problem
linearised about the homogeneous equilibrium. This gives the condition

b − (a + b)3 ε2 − a = −2 (a + b)2 ε. (2.4)

The curve (2.3) is plotted in Figure 1(a) in the (a, b)-plane for fixed ε (solid red line). Using
weakly nonlinear analysis (details not presented) we find that for sufficiently large a, stable
periodic patterns bifurcate supercritically from the Turing bifurcation as b increases (into the
yellow shaded region in the figure). For smaller a, the bifurcation is subcritical and a fold in the
periodic structures occurs for lower b values, creating a Pomeau pinning region (shaded green in
the figure) in which localised structures are observed. The large a limit of the localised structures
region is formed by the codimension-two point where the Turing bifurcation changes from being
sub- to supercritical (indicated by the pink circle in the figure).
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4 F. Al Saadi et al.

(a)

(b) (c)

FIGURE 1. Color version online. (a) The (b, a) bifurcation diagram for fixed ε= 0.01 and l = 100. The red
curve represents a Turing bifurcation and black lines represent the (outer) folds of a bifurcation diagram
of localised solutions. (b) One-parameter numerical bifurcation diagram showing snaking of multi-pulsed
solutions for a = 3 as b varies. A continuous (or dashed) line indicates where spectral computation indicates
that the solution is stable (unstable). A red (blue) colour indicates that the number of peaks in the solution
is odd (even). Insets show u and v solution profiles at the two indicated points in the bifurcation diagram.
(c) One-parameter numerical bifurcation diagram as b varies for a = 0.3785 where a fold bifurcation con-
nects spike solutions that are computed to be stable (unstable) as indicated by a continuous (dashed) line.
Insets show the u and v solution profiles at the indicated points.

Figure 1 also contains numerical results obtained using AUTO [6] on the bifurcation structure
of localised solutions within the green shaded region. Details of the analytical and numerical
methods used will be presented elsewhere [1], which will also point to the ubiquity of this overall
shape of bifurcation diagram to other reaction-diffusion systems.

The BD curve defined by (2.4) is also depicted in Figure 1(a); note how it divides the localised
structure region into two parts. The region to the right of the BD line is where spatial eigenval-
ues are complex and localised solutions have oscillatory tails, whereas to the left line, the spatial
eigenvalues are purely real and solutions have monotonic tails. Recently [29], in a class of reac-
tion diffusion equations which includes (2.1), it is argued that a single-spike localised pattern
crossing a BD from right to left in the sense of Figure 1(a) should result in the destruction of
all but a finite number of localised pattern solutions. Effectively, the infinitely many additional
stable multi-pulse solutions to the right become delocalised in the limit of the BD line, via the
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Spikes and localised patterns for a novel Schnakenberg model 5

distance between their large peaks tending to infinity. Figure 1(b) and (c) show one-parameter
bifurcation diagrams of localised structures obtained numerically, which appear to confirm this
prediction. The figures also indicate which among the various solutions are found numerically to
be stable.

In particular note that the localised solutions for small a and b shown in the inset to Figure 1(c)
consists of a highly localised spike in u, but is more spread out in the inhibitor field v. This obser-
vation is suggestive that there may be a semi-strong asymptotic analysis that can predict the
bifurcation diagram observed for these two spike solutions. Note that the v field appears expo-
nentially localised, which would suggest a different approach to the finite-domain assumption
typically used in previous works, e.g. [15, 30] in which the v field is approximately two reflected
quadratic functions.

A related fold point has been studied for the Gray–Scott model (where a = 0, and which also
includes a decay term in the v equation). See, for example, [7, 19, 20, 16] where such fold point
and related stability properties were analysed on either infinite or bounded domains.

3 Semi-strong asymptotic construction of spike solutions

Consider the steady-state system version of (2.1):

a − u + u2v + ε2 ∂
2u

∂x2
= 0, x ∈ (−l, l), (3.1a)

b − u2v+ ∂2v

∂x2
= 0, x ∈ (−l, l), (3.1b)

subject to Neumman boundary conditions. We are interested in the limit that l → ∞, in which
case we shall seek a solution of (3.1) that is a homoclinic orbit in space to the homogeneous
equilibrium

u → a + b, v→ b

(a + b)2
, as x → ±∞.

The semi-strong interaction method [30] is a form of matched asymptotic expansion which
applies to the current problem when both parameters a and b are small. In particular, we find a
natural distinguished limit by setting

a = ε α, b = ε2 β, where α and β are O(1), (3.2)

to obtain

0 = ε2 ∂
2u

∂x2
+ u2v− u + εα, (3.3a)

0 = ∂2v

∂x2
+ ε2β − u2v. (3.3b)

We then seek solutions expanded in powers of ε

u(x) = u0 + εu1 + O(ε2), v(x) = v0 + εv1 + O(ε2),

in the inner and outer asymptotic regimes, separately.
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6 F. Al Saadi et al.

3.1 Inner solution

Without loss of generality, assume that the centre of the spike solution is at x = 0, and introduce
a new spatial coordinate given via

x = εy. (3.4)

Collecting leading order terms of system (3.3), we obtain

u0yy − u0 + u2
0v0 = 0, (3.5a)

v0yy = 0. (3.5b)

Solving system (3.5), we find that v0 is a constant to be determined

v0 ≡ κ . (3.6)

Then, from the u equation we need to find a solution

u0 = (1/κ)w(y), (3.7)

where w(y) satisfies

w′′ − w + w2 = 0, −∞< y<∞, (3.8a)

w → 0 as y → ±∞; w′(0) = 0, w(0)> 0. (3.8b)

The unique solution to (3.8) is

w(y) = 3

2
sech2

( y

2

)
. (3.9)

3.2 Outer solution

We introduce a new scaling within an outer region, given by

x = z

ε
, u = εû(z), v = v̂(z).

Collecting terms in (3.3) that have the same order of ε to leading order we find

û0(z) = α, and v̂0zz − û2
0v̂0 + β = 0.

However, it is useful to include the O(ε)-correction to the u solution, so that we can match the
asymptotic boundary conditions exactly in the limit l → ∞. That is,

û(z) = α + εβ, (3.10)

in which case, we find that the leading order solution for v needs to satisfy

v ∼ β

(α+ εβ)2
when |z| � 1.

In the outer region, we solve separately on the intervals z ∈ [−εl, 0] and z ∈ [0, εl]. Solving
separately on these domains, we get

û(z) = α + εβ,
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Spikes and localised patterns for a novel Schnakenberg model 7

and

v̂(z) =
(
κ(α+ εβ)2 − β

)
(α+ εβ)2 cosh(εl(α + εβ))

cosh((α + εβ) (|z| − εl)) + β

(α+ εβ)2
. (3.11)

In the limit l → ∞, this function can be written as

v̂(z) =
(
κ − β

(εβ + α)2

)
exp [−(εβ + α)|z|] + β

(εβ + α)2
.

3.3 Matching

In order to match inner and outer solutions, we have freedom to choose a value of the free
variable κ . A typical approach would be to match derivatives of the inner and outer solutions at
x = 0. But the outer solution is not differentiable there. So, following Ward et al. [30] we look to
match the solutions in a weak sense. The novelty here though is to use a matching method that
does not rely on l being finite.

Adding the inner and outer solutions from the previous sections, we obtain

u(x) = 3

2κ
sech2

( y

2

)
+ εû

( z

ε

)
, v(x) = v̂

( z

ε

)
,

which we then substitute into a weak form of the v equation:∫
inner

[ ε2β − u2v + vxx ]dx = 0 (3.12)

in the limit ε→ 0. Here, the domain of integration corresponds to an extended interval around
the inner asymptotic region that includes a matching zone:

∫
inner = ∫ δ

−δ where δ is an arbitrary
number, assumed to have the asymptotic order ε� δ� 1.

It would seem that condition (3.12) for the matching of the inner and outer solutions (which
contrasts with that in [30] where integration is taken over the entire outer domain) can be seen as
somewhat akin to the vanishing of a Melnikov integral, as used in geometric singular perturbation
theory, e.g. [8]. A detailed comparison between the different asymptotic theories is beyond the
scope of this paper.

Consider the three terms in the integrand of (3.12) separately. The first term integrates to zero
because ε2β is vanishingly small in the limit ε→ 0. The second term can be approximated as∫ ∞

−∞
εκu2

0(y)dy =
∫ ∞

−∞
ε

κ
sech4

( y

2

)
dy = 6ε

κ
. (3.13)

Finally, the third term can be approximated as

∫ 0+

0−
v̂zzdz = [v̂z]0+ − [v̂z]0− = −2

(
κ − β

(α+ εβ)2

)
ε (α + εβ) tanh(εαl). (3.14)

Substitution of (3.13) and (3.14) into (3.12) yields the following quadratic equation for κ(
−2 (α + εβ) κ2 + 2βκ

(α+ εβ)

)
ε tanh(εαl) − 6ε= 0. (3.15)
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8 F. Al Saadi et al.

(a) (b)

FIGURE 2. Colour version online. A zoom of the spike region of Figure 1. (a) The dashed red line indicates
the analytical upper expression (3.18) in the limit l → ∞, which can be compared to the the solid black fold
line computed numerically. (b) The corresponding fold curves for different finite values of l; with dashed
(solid) lines representing analytic (numerical) approximations.

Note that when l → ∞, tanh(εαl) ∼ 1, which yields

−2(α + εβ) κ2 + 2βκ

(α + εβ)
− 6 = 0. (3.16)

On the other hand, the domain l must be much larger than the width of the spike in order for the
asymptotics to be consistent. This means that we must assume l � O(ε).

Solving (3.16), we obtain two values for κ , which correspond to a small and a large value.
Specifically,

κ1 = β −
√

−12 (εβ + α)3 + β2

2 (εβ + α)2
, (3.17a)

κ2 = β +
√

−12 (εβ + α)3 + β2

2 (εβ + α)2
. (3.17b)

We shall refer to κ1 as corresponding to an ‘upper branch’ of the spike solution, and κ2 to a
‘lower branch’. Finally, we can find a fold bifurcation of spikes by setting the discriminant of
(3.15) to zero, which gives a curve in the (a, b) plane given by

β2 tanh(εαl) − 12 (α + εβ)3 = b2 tanh(al) − 12 ε (a + b)3 = 0. (3.18)

The two spike solutions exist for a values less that this curve, and b values above it.

3.4 Comparison with numerics

Figure 2(a) plots a zoom of the left-hand corner of Figure 1(a), comparing the computed left
and fold with the formula (3.18) in the limit l → ∞ as a red dashed line. It is clear that the two
lines are in good agreement in the limit of small a and b where the asymptotic analysis applies.
Figure 2(b) shows (3.18) for different values of l (dashed lines) which is again shown to have
good agreement with the corresponding numerical results from AUTO.

Figures 3 and 4 show a comparison between the approximate solutions obtained via asymp-
totic analysis and the corresponding numerical solution obtained using AUTO. It is clear from
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Spikes and localised patterns for a novel Schnakenberg model 9

(a) (b)

(c) (d)

FIGURE 3. Color version online. Comparison between the semi-strong asymptotic solution and the numer-
ical solution for a = 0.04, b = 0.005 and ε= 0.01 in the limit l → ∞ (computations performed with
l = 1000). (a) Solution profile u(x) for x> 0 on the upper branch; green and blue continuous lines indi-
cate the inner and the outer solution, respectively. The red dashed lines represent the sum of the inner
and outer solutions, and the black dashed line is the numerical solution. (b) Solution profile for v(x) for
x> 0 on the upper branch with red and black dashed lines indicating the analytical and numerical solutions,
respectively. (c)–(d) Solutions for the lower branch plot identically to panels (a)–(b), respectively.

the figures that there is good agreement for both the upper/stable and lower/unstable branch of
solutions, both on a finite domain and an infinite domain. Note how the agreement gets better as
l → ∞. Also note how the v component transforms from being exponentially localised to being
more quadratic-shaped as l is decreased from +∞.

4 Stability analysis

In this section we consider linear stability of a spike. Our analysis is closely related to [31, 32]
and uses the results on the related Non-local Eigenvalue Problem (NLEP) therein.

We start by considering a more general case where the timescales of the two fields are differ-
ent. Specifically, let us assume that a time scaling parameter τ multiplies vt, so that system (2.1)
becomes

ut = ε2uxx − u + u2v + εα, (4.1a)

τvt = vxx − u2v + ε2β . (4.1b)

It will be convenient to consider τ at first to be small, and then continue up to the case τ = 1,
which leads to (2.1).
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10 F. Al Saadi et al.

(a) (b)

(c) (d)

FIGURE 4. Colour version online. Similar to Figure 3 but on a finite domain. (a) and (b) Analytical approx-
imations to solution profiles for u(x) and v(x), respectively, for the upper branch (solid lines) and their
numerically obtained counterparts (dashed lines). (c)–(d) Solutions for the lower branch plot identically to
panels (a)–(b), respectively.

4.1 A non-local eigenvalue problem

We first linearise around steady state by taking

u(x, t) = u0(x) + φ(x) exp(λt),

v(x, t) = v0(x) +ψ(x) exp(λt) ,

where we assume |φ|, |ψ | � 1. Then we obtain the linearised problem

λφ = ε2φxx + (2u0v0 − 1)φ + u2
0ψ ,

τλψ =ψxx − 2u0v0φ − u2
0ψ .

In the inner region, we let y = x
ε
, then to leading order we obtain ψyy = 0 so that ψ ∼ψ0 is a

constant which needs to be determined. The equation for φ then becomes

λφ = φyy + 2wφ − φ + w2

κ2
ψ0. (4.2)

In the outer region, we approximate

ψxx − τλψ − ε2α2ψ = cδ(x; 0), (4.3)
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Spikes and localised patterns for a novel Schnakenberg model 11

where

c = 2
∫ 0+

0−
u0v0φdx +

∫ 0+

0−
u2

0ψdx

∼ 2ε
∫ ∞

−∞
φwdy + 6ε

κ2
ψ0 , as ε→ 0

in which we have used the fact that
∫ ∞
−∞ w2dy = 6. The solution to (4.3) can be written as

ψ = cG(x;μ),μ=
√
τλ+ ε2α2

where G(x;μ) is the Green’s function which satisfies{
Gxx −μ2G = δ(x; 0),

Gx(±l) = 0 ,

and

G(x;μ) = − 1

2μ sinh(μl)
cosh(μ(|x| − l)).

Therefore the solution to (4.3) is

ψ(x) = − c

2
√
τλ+ ε2α2 sinh(

√
τλ+ ε2α2l)

cosh(
√
τλ+ ε2α2(|x| − l)),

and we solve ψ0 by letting

ψ0 =ψ(0) = − ε
∫
φwdy + 3ε

κ2ψ0√
τλ+ ε2α2 tanh(

√
τλ+ ε2α2l)

so that

ψ0 = − ε
∫
φwdy

3ε
κ2 + √

τλ+ ε2α2 tanh(
√
τλ+ ε2α2l)

. (4.4)

Substituting (4.4) into (4.2) yields the following non-local eigenvalue problem (NLEP)

λφ = L0φ − w2

∫
φwdy

A
, (4.5)

where L0φ = φyy − φ + 2wφ and

A = 3 +
√
τλ

ε2
+ α2 tanh(

√
τλ+ ε2α2l)κ2. (4.6)

To analyse stability, we consider the following two cases τ = 0 and τ = 0.

4.2 The case τ = 0

When taking τ = 0, A in (4.6) simplifies to

A = 3 + α tanh(εαl)κ2, (4.7)

then equation (4.5) reduces to a well-known NLEP which is first studied in [32], in particular,
we have the following basic result:
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Theorem 1 (See [32]) Consider the problem (4.5), we have Re(λ)< 0 if A< 6, Re(λ)> 0 if
A> 6, and λ= 0 with φ = w if A = 6.

To determine the stability of two branches corresponding to the values κ1 and κ2 shown in (3.17),
we substitute κ1,2 into (4.7) to obtain

A(κ1,2) = β2 tanh(εαl)

2α3
± β

√
tanh(εαl)

2α
3
2

√
β2tanh(εαl)

α3
− 12. (4.8)

Since the existence of a solution for κ2 requires β2tanh(εαl)
α3 > 12, it is easy to see that A(κ2)> 6, so

by Theorem 1 the solution corresponding to κ2 is unstable. For the other branch, corresponding

to κ1, we take β2tanh(εαl)
α3 = 12 + δ, where δ > 0, then we have

A(κ1) = 6 −
√

12δ + δ2 − δ

2
< 6.

Therefore, the solution corresponding to κ1 is stable. Moreover, at the fold point where
β2tanh(εαl)

α3 = 12, we can easily get from (4.8) that A = 6, which corresponds to λ= 0. We
summarise our result as follows.

Proposition 1 In the case τ = 0, the one-spike solution u(x), v(x) given in (3.7), (3.11) with
v(0) = κ2 is unstable and the other branch v(0) = κ1 is always stable. The two roots connect at
a fold point corresponding to a double root of (3.15).

4.3 The case τ �= 0

We now study the case with A depend on λ. To study the stability of the lower branch with
v(0) = k2, we first rewrite equation (4.5) in the following form:

(L0 − λ)φ = w2, where
∫
φw dy = A(λ) ,

or ∫
w(L0 − λ)−1w2 dy = A(λ). (4.9)

(Here, we use the fact that φ is only defined up to a multiplicative constant and we scale φ so
that

∫
φw = A).

We denote the left-hand side of equation (4.9) as f (λ). The global behaviour of precisely this
same f (λ) was studied in [31], from which we obtain the following basic results:

Theorem 2 (See [31]) f (λ) has the behavior

f (0) = 6, f ′(λ)> 0, f ′′(λ)> 0, λ ∈
(

0,
5

4

)
.

Moreover, f (λ) has a singularity at λ= 5
4 with f (λ) → ±∞ as λ→ 5

4 ±. For λ> 5
4 , we have

f (λ)< 0 and f (λ) → 0 as λ→ ∞.
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(a) (b)

FIGURE 5. Computational results illustrating the stability analysis; see text for details. (a) The function
f (λ) given in left-hand side of (4.9). (b) Hopf bifurcation points τ̂h against γ .

The graph of f (λ) is shown in Figure 5(a). Since from the right-hand side of equation (4.9), we
have that A(λ) is continuous and from the previous subsection we have that A(0)> 6. Therefore
the two functions f (λ) and A(λ) must intersect in the domain λ> 0, so that equation (4.9) must
have a positive eigenvalue, which shows that the lower branch with v(0) = κ2 is unstable.

We now study the stability of the upper branch, with v(0) = κ1. Since we are interested in large
domain l → ∞, we let tanh(εαl) ∼ 1, then we rewrite A as following by introducing τ̂ = τk4

ε2 , and
γ = α2k4, to obtain

A ∼ 3 +
√
τ̂ λ+ γ .

When τ̂ is sufficiently large, the system can be destabilised via a Hopf bifurcation. This was first
proved in [31], from which we have the following result:

Theorem 3 (See [31]) In the case τ̂ > 0, the one-spike solution u(x), v(x) given in (3.7), (3.11)
with v(0) = κ2 is always unstable and v(0) = κ1 is stable only when 0< τ̂ < τ̂h for some τ̂h > 0.
As τ̂ increases past τ̂h, a Hopf bifurcation in the amplitudes of the spikes is triggered.

Although we know of no explicit formula for the threshold τ̂h at which the Hopf bifurcation
occurs, we can compute τ̂h numerically. We discretised the NLEP (4.5) using a finite differences
method. This results in a matrix eigenvalue problem M �φ = λ �φ. Here, �φ is an n by 1 column
vector corresponding to the discretisation of the eigenfunction φ(x), where n is the number of
mesh points, and M is an n by n matrix corresponding to the discretisation of the linear operator
in (4.5). When τ̂ = 0, this is a straigtforward matrix eigenvalue problem whose eigenvalues we
computed using MATLAB’s eig command. However when τ̂ = 0, the coefficients in M also
depend on λ: M = M(λ). In this case, we used an iterative approach: starting with some λ0, we
solve M(λ0)φ = λ1φ for λ1; then M(λ1)φ = λ2φ for λ2, etc., with λi → λ as i → ∞.

For a fixed γ , we used the above method to compute τ̂h such that Re(λ) = 0. The result is
shown in Figure 5(b), which shows the Hopf bifurcation point τ̂h for γ ∈ (0, 9).
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FIGURE 6. Hopf bifurcation threshold (Result 3). The parameters are ε= 0.05, l = 100. Here, dashed line
are obtained through full simulations of system (2.1) by FlexPDE; different coloured solid line is obtained
by computing αh such that k solved in (4.11) satisfy (4.10), i.e. v0(αh) = 1.99ε

1
2 .

4.4 The case τ = 1; comparison with numerics

In this paper, we consider system (2.1) with τ = 1, which yields

τ̂ = κ4

ε2
. (4.10)

In particular, we consider the regime β � 1 (independent of ε) and α∼ O(1), then to leading
order we have from (3.17a) that

κ1 ∼ 3 (α + εβ)

β
+ 9 (α + εβ)4

β3
+ O

(
1

β5

)
≈ 3α

β
. (4.11)

Therefore κ4
1 � 1 and γ = α2κ4

1 ∼ 0, in which case τ̂h ∼ 15.7. From (4.10), we obtain the critical
bifurcation value for alpha

αh ∼ ε
1
2 τ̂

1
4

h β

3
= 15.7

1
4 ε

1
2 β

3
∼ 0.6636ε

1
2 β.

We summarise our results as follows.

Proposition 2 In the case τ = 1, the one-spike solution u(x), v(x) given in (3.7), (3.11) with
v(0) = κ1 is stable only when 0<α <αh. As α increases past αh, a Hopf bifurcation in the
amplitude of the spikes is triggered. In particular, in the regime of large β, we have

αh ∼ 0.6636ε
1
2 β.

To verify the proposition, we can compare with numerical computation of the spectrum using a
finite-difference approach. The result is shown in Figure 6, which shows good agreement when
we take various different approximations to κ1 that are accurate to O(ε)

Note the apparent contrast between this asymptotic result and the depicted numerical stability
result of the spike solutions in Figure 1(c) for which no Hopf bifurcation on the upper branch
was found. To resolve the apparent descrepancy, note however that the numerical results in that
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(a) (b)

FIGURE 7. Color version online. A zoom of the numerical two-parameter bifurcation diagram for small
a and b with region ε= 0.05 in the limit of l = 100. (a) The dashed (blue) curve indicates the location of
the Hopf bifurcation. (b) Bifurcation diagram of max u vs. a for fixed b = 0.01 and ε= 0.05 showing the
stable and unstable branches joining at the Hopf point ah = 0.0408. The insets show represent solutions and
corresponding linear spectrum either side of the Hopf bifucation.

figure were for a = 0.3785, which for ε= 0.01 is outside of the asymptotic regime of the present.
Figure 7(a) shows a similar computation for a ∼ 0.1 and ε= 0.05 which is consistent with the
asymptotic limit. Here we see that as for small a there is indeed a Hopf bifurcation on the upper
branch, before it connects to the lower branch in the fold. As a increases, the Hopf point gets
closer to the fold and dissapears in a codimension-two point for a ≈ 0.2. For larger a-values the
upper branch is stable all the way up to the fold point. Here, the location of the Hopf instability
was found by computing the spectrum of the spike solution and using a simple bisection method
to find where a pair of imaginary eigenvalues cross the imaginary axis (see Figure 7(b). The
numerical results also confirms that the Hopf eigenvector (not shown) is localised and represents
oscillation of the core of the spike.

4.5 Numerical simulation results

To establish whether the Hopf bifurcation is super or sub-critical, we use the direct numerical
simulation of (2.1). Based on the computation in Figure 7(b), it is possible to select two points;
one just before the Hopf bifurcation and the other just after. Figure 8(a), (b) illustrates the results
of the direct simulation of (2.1) as the maximum of the u component as a function of time
for b = 0.09 and ε= 0.05, given small spatially uniform perturbations to the spike solutions u0

and v0. That is the initial condition is (u(x, 0), v(x, u)) = u0(x) + δ, v0(x) + δ). For these values
of the parameters, the Hopf occurs at ah = 0.1658. Figure 8(a) shows that the spike solution
before the Hopf point a = 0.1657, seems to be stable under small perturbations (δ ≤ 0.085), yet
for a perturbation that is slightly bigger, the solution leaves the basin of attraction of the spike
solution and completely collapses to the homogeneous steady state. As we move beyond the Hopf
point, any size of perturbation is found to oscillate with increasing amplitude until it collapses
completely back to the homogeneous steady state; see Figure 8(b). Hence, it can be concluded
from the numerical simulation that the Hopf bifurcation is subcritical.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792520000431
Downloaded from https://www.cambridge.org/core. Dalhousie University Libraries, on 06 Feb 2021 at 21:31:41, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792520000431
https://www.cambridge.org/core


16 F. Al Saadi et al.

(a) (b)

(c) (d)

FIGURE 8. Direct simulation results for ε= 0.05 as a graph of the u value of the centre of the spike over
time, given initial conditions that are a small perturbation from the steady pulse solution. (a) Solution
to (2.1) with a = 1.657, b = 0.09 and l = 120; (b) the same except a = 0.171. (c) Solution to (4.1) with
a = 0.06, b = 0.02, l = 130 and τ = 0.255; (d) the same with τ = 0.28.

Extensive simulations have revealed that the Hopf bifurcation is subcritical for all values of a
and b forming the curve of Hopf bifurcations in Figure 7(a). However, we have found evidence
that the Hopf bifurcation may become supercritical for larger values of ε. Alternatively if we
take a value of a and b well inside the stable spike region of Figure 7(a), we find that reducing
the value of τ can produce a Hopf bifurcation that is supercritical. See Figure 8(c), (d).

We have also performed further simulations of what can happen on a finite domain. Just like
many other reaction diffusion models such as the desertification model [34] or the ‘classical’
Schankenberg model [30, 12], the extended Schankenberg model exhibits spike self-replication
when b is increased. In addition, we have found a new mechanism leading to birth of new spikes –
as illustrated in Figure 9 – that occurs for higher values of a: we call this ‘spike insertion’ whereby
additional spikes appear from the ‘background’, away from other spikes. Contrast this with spike
replication, where a spike splits into two. Numerical simulations suggest that spike insertion is
more prevalent for smaller values of a and when there are fewer spikes already present, and
in general spike replication can follow spike insertion as b is increased further. Unlike spike
replication, spike insertion is specific to the extended Schnakenberg model and, as far as we
are aware, does not occur in the classical Schnakenberg model (with a = 0) nor the Gray–Scott
model.
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FIGURE 9. Spike insertion vs. spike splitting. Full numerical simulations of (2.1) with ε= 0.05, l = 10 and
with b gradually increased according to the formula β = 20 + 0.001 ∗ t, for several values of α as indicated
in the sub-panels, where a = εα, b = ε2β. α = 2: two insertion events followed by self-replication events.
α = 1: one insertion event. α = 0.5: no insertion events. Generally, for larger values of α several spike-
insertion events can occur when β is relatively small, followed by self-replication events as β is further
increased. For smaller values of α, only self-replication occurs as β is increased.

5 Conclusion

One of the aims of this work has been to show a connection between the semi-strong asymptotic
analysis and the theory of homoclinic snaking in systems of reaction diffusion equations (see also
[23, 26] for earlier results in this direction). The former can be used to find analytic expressions
for the structure and stability of spike solutions in a rather specific asymptotic limit. The latter,
applies in the large, but apart from in a neighbourhood of a degenerate Turing bifurcation cannot
provide asymptotic estimates. The nature of the localised structures found by the two different
theories are radically different too. The former finds isolated spike solutions where one field is
much more localised. The latter finds solutions a plethora of localised solutions that many peaks.
The results in this paper go some way to demonstrating how the very different structures captured
by the different theories can connected in an appropriate multi-parameter bifurcation diagram.

The key to the results presented here, compared with many other papers to use the semi-strong
asymptotic theory, has been to pose the problem on the infinite domain. Then we can find a fold
as an appropriate parameter is varied. We find numerically that this fold forms the outer extent
of the localised pattern region, which extends far away from the asymptotic limit and into the
snaking region. Moreover, we have shown how the exponentially localised solutions found by
taking an infinite domain, naturally transition to the solutions that are delocalised in the v field.
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An additional feature we found is the presence of a Hopf bifurcation in the limit that the
source parameters a and b are sufficiently small. The presence of this instability was argued
using an extension to a previously analysed non-local eigenvalue problem. For the particular
model studied though, this instability was found numerically to not penetrate into parameter
regions with large a and b. Preliminary calculations suggest that further asymptotic explanation
of this disappearance of the Hopf bifurcation might be possible, by taking a slightly different
distinguished limit.

It is helpful for us describe the difference between the ‘extended’ Schankenberg model (2.1)
and what we shall call the ‘classical’ Schankenberg model, which has no source term for the
activator, i.e. a = 0 in (2.1), see, e.g. [30]. There are several key differences here. In particular,
the introduction of the non-zero activator feed rate allows for a spike solution which exists on
an unbounded domain x ∈R. For the classical Schankenberg model that is not the case; a single
spike cannot be constructed on an unbounded domain. Note however that a single spike on the
entire domain is possible for Gray–Scott model which also has a decay term in v. Moreover the
outer region for u no longer decays to zero, and instead leads to a nonlinear outer problem and
gives the possibility of a fold.

We have also found novel dynamics of the spike solutions. We have provided strong numerical
evidence that the Hopf bifurcation may be either supercritical or subcritical Hopf bifurcations,
depending on the paramaeter values. We have also found evidence of novel spike insertion
dynamics. These dynamical features warrant further analytical investigation; which should form
the subject of future work.

Finally, although the results presented here are relevant for a particular Schnakenberg model,
we believe the results are likely to be ubiquitous for a large class of physically important reaction-
diffusion equations. That ubiquity will be explored in forthcoming work [1].
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