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Using the Klein-Majda-Damodaran model of nearly-parallel vortex filaments, we construct vortex
knots and links on a torus involving periodic boundary conditions and analyze their stability. For
a special class of vortex knots – toroidal knots – we give a full characterization of both their
energetic and dynamical stability. In addition to providing explicit expressions for the relevant
waveforms, we derive explicit formulas for their stability boundaries. These include simple links
and different realizations of a trefoil knot. It is shown that a ring of more than 7 filaments can
potentially be stablized by giving it a slight twist and connecting neighbouring filaments on a torus.
In addition to rings, (helical) filament lattice configurations are also considered and are found
to be dynamically stable for all rotation frequencies and also energetically stable for sufficiently
fast rotations. Numerical simulations are used to compare the Klein-Majda-Damodaran model
with the full three-dimensional (3D) Gross-Pitaevskii equations as well as to confirm the analytical
theory. Potential differences between the quasi-one-dimensional and the fully 3D description are
also discussed.

1. INTRODUCTION

States bearing topological charge constitute a principal theme within a variety of areas in Physics, including (but
not limited to) optics [1], condensed matter [2, 3], as well as hydrodynamics [4]. The experimental realization of
Bose-Einstein condensates (BECs) has offered a platform where numerous vortical excitations could be explored,
and their interactions with each other and with external potential landscapes could be monitored in a systematic,
time-resolved manner [5–7]. This has led to a significantly enhanced understanding of the role of vortical patterns
in BEC dynamics, as well as in quantum turbulence, which has by now been summarized in a substantial number of
review publications [8–13].

The gradual formulation of an understanding of the building blocks such as vortex lines and vortex rings as summa-
rized in the above studies has propelled a considerable volume of ongoing interest towards the formulation, dynamical
monitoring and qualitative understanding of more elaborate structures such as vortex knots and links. These have
been explored chiefly in a homogeneous (density background) setting as, e.g., in [14–22]. Recent work [23] has argued
that upon suitable (anisotropic) trapping conditions such knot structures may be long-lived, while experiments with
spinor BECs have spearheaded the realization/observation of the structures [24, 25]. It is worth noting, in passing,
that such structures are not only relevant in BECs but in numerous other areas including, e.g., nonlinear optics [26],
but also DNA strands [27], magnetic fields in plasmas [28], classical fluids [29], superfluids [30, 31]; and helical
filaments in the wake of turbines [32–35].

Our starting point in the present work will be rather different than that of most of the above studies. We will start
from an effective quasi-one-dimensional mathematical description of vortex filaments developed in [36] (see also [37]
for an equilibrium statistical theory and [38] for a recent dynamical analysis of the model). We will use the latter
as a framework for obtaining exact analytical solutions for co-rotating (helical) vortex filaments. The latter through
the use of periodic boundary conditions will formulate structures akin to vortical knots and links. Upon identifying
such states and parametrizing them by a pair of integer indices, we will analyze their existence (e.g. frequency and
radius of rotation in section 2), as well as stability (in section 3) properties. In section 4, we examine a lattice of
such filaments. In section 5, we return to the original motivating problem of the 3-dimensional prototypical model of
BECs (the Gross-Pitaevskii (GP) equation [5–7]) and explore the validity of our existence and stability conclusions
therein. Finally, we summarize our findings and present our conclusions, as well as some possible directions of future
study in section 6.
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2. EXISTENCE OF VORTEX FILAMENT STATES

In [36, 37] the authors derived a simplified model describing the evolution of K nearly-parallel vortex filaments –
the so-called Klein–Majda–Damodaran (KMD) model. The reduced equations they derived are

− i ∂
∂t
Xk = D

∂2

∂z2
Xk +

∑
j 6=k

Xk −Xj

|Xk −Xj |2
, k = 1 . . .K. (2.1)

Here, z denotes the direction that is nearly parallel to all the filaments; and Xk(z, t) ∈ R2 is the two-dimensional
position of the k−th (topologically charged) filament at height z and time t.

The goal of this paper is to study the stability of helical “co-rotating” vortex filaments using the reduced equations
(2.1). We also, however, endeavor to return to the original Gross-Pitaevskii model from which this reduced dynamics
is obtained and to compare the predictions of the effective model with the original one. We assume that each filament
is rotating with the same angular velocity Ω without changes in shape, so that the whole configuration undergoes
a “rigid” rotation. These are some of the simplest nontrivial filament configurations. By analogy to point vortex
literature, we refer to these configurations as relative equilibria [39–42], i.e., equilibria in the rotational frame of
reference. Assuming that the system rotates with a rate Ω, we make a change of variables

Xk(z, t) = eiΩtξk(z, t) (2.2)

so that the ξk satisfy

− i ∂
∂t
ξk = D

∂2

∂z2
ξk − Ωξk +

∑
j 6=k

ξk − ξj
|ξk − ξj |2

. (2.3)

Relative equilibria are time-independent steady states of this system. More generally, we also examine what
happens when adding “relaxation” as follows:

(−iγ1 + γ2)
∂

∂t
ξk = D

∂2

∂z2
ξk − Ωξk +

∑
j 6=k

ξk − ξj
|ξk − ξj |2

. (2.4)

The latter model has been used in the context of vortices in order to study their dynamics in finite temperature
settings [43, 44] and relevant ideas have even been extended to recent experiments measuring, e.g., the rate of vortex
spiraling out of the condensate in connection with the relaxational term in the corresponding dynamics [45]. The
limit γ1 → 0 (or γ2 →∞) can be thought of as an overdamped limit. After time-rescaling, the overdamped system
leads to

∂

∂t
ξk = D

∂2

∂z2
ξk − Ωξk +

∑
j 6=k

ξk − ξj
|ξk − ξj |2

. (2.5)

The equilibrium (time-independent) confirgurations are solutions of the system (2.4); at the same time they are
are also steady states for both (2.3) and (2.5). However it turns out that the stability of the two systems (2.3) and
(2.5) can be different. We shall refer to stability with respect to (2.5) as energetic stability; whereas the stability
with respect to (2.3) will be called dynamical stability. This nomenclature is justified by thinking of (2.5) as
the gradient flow of the associated energy functional discussed, e.g., in [36, 38]. We will show that there are stable
equilibrium solutions of (2.3) which are unstable with respect to the system (2.5). This is a feature that is common
in Hamiltonian systems in connection to their dissipative counterparts; see, e.g., [46] for a relevant discussion of
dynamical and energetic stability.

The questions that we ask are the following:

� What are the steady states of (2.3)?

� What is their dynamical stability (i.e. stability with respect to (2.3))?

� What is their energetic stability (i.e. stability with respect to (2.5))?

The stability is intimately connected with the selection of boundary conditions. In this work we assume the
following doubly-periodic boundary conditions

z ∈ [0, P ] ; ξk(P, t) = ξk+q (0, t) (modK). (2.6)
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FIG. 1. Two graphical representations of toroidal vortex filament knots for several values of (K, q) as indicated. On the left
is the cartesian representation with (x, y) = ξk(z). On the right is toroidal representation with z wrapping around the center
of the torus. Refer also to Table I

The “usual” periodic BC correspond to the case where q is an integer multiple of K. When visualized on a torus, such
doubly-periodic solutions represent knots and links (with the number of links being given by the gcd (K, q)). The
simplest such knots and links, corresponding to helical filaments, are the so-called toroidal knots, and are illustrated
in Figure 1; see also Table I below. For example the trefoil knot can be realized as a (K, q) = (2, 3) toroidal knot.

The simplest configuration consists of straight filaments, where each z cross-section corresponds to point vortices
in a relative equilibrium. The corresponding dynamics is that of co-rotating 2D vortices, trivially extended into
the third dimension. As we will show below, these structures are dynamically stable with respect to the reduced
equations (2.1), as long as the underlying point vortex configuration is stable.

A more interesting steady state consists of helical filaments having the form

ξk(t, z) = eziωηk (2.7)

with ηk satisfiying

0 = −Γηk +
∑
j 6=k

ηk − ηj
|ηk − ηj |2

where Γ = Dω2 + Ω. (2.8)

In other words, {ηk} , k = 1 . . .K are relative equilibria of the associated point-vortex problem, corresponding to a
shifted frequency Γ = Ω + Dω2. Conversely, all helical filament states of the form (2.7) correspond to equilibria of
the point-vortex problem (2.8). Note also that Γ in (2.8) can be set to one by rescaling, so that this problem is
parameter-free.

We remark that the solution to (2.8) exists only if Γ > 0 [47]. To see this, take the dot product of (2.8) with ηk
and sum over k. We then obtain

Γ
∑
k

|ηk|2 =
∑
k

∑
j 6=k

|ηk|2 − ηj · ηk
|ηk − ηj |2

=
∑
k

∑
j>k

|ηk|2 − 2ηj · ηk + |ηj |2

|ηk − ηj |2
=

(K − 1)K

2
,

so that

Γ =
(K − 1)K

2

1∑
k |ηk|

2 > 0. (2.9)

A natural realization of the boundary conditions (2.6) is by placing vortices uniformly along a ring,

ηk = rei2πk/K (2.10)

while setting the frequency ω in (2.7) to be

ω =
2π

P

q

K
, q ∈ Z, (2.11)

so that the doubly-periodic boundary conditions are automatically satisfied. Then we have

∑
j 6=k

ηk − ηj
|ηk − ηj |2

=
ei2πk/K

r

(K − 1)

2
,
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so that r is given by

r2 =
K − 1

2Γ
(2.12)

(as can also be seen from (2.9)). This leads to what we shall call a filament ring state:

Proposition 2.1. ((K,q) filament ring). For any integers q,K, there is a steady state of (2.5) that has the form

ξk(t, z) = reziωei2πk/K (2.13)

where

ω =
2π

P

q

K
, r2 =

K − 1

2 (Dω2 + Ω)
(2.14)

Such a steady state satisfies the boundary condtions ξk(P ) = ξk+q (0) where the indices are taken modulo K.

Figure 1 and Table I show some case examples of these steady states. We now provide the layout of the results that
follow. Firstly, we give the full characterization of stability of these filament rings, both energetic and dynamical.
This is done in Section 3. We then consider more general helical states where each z-cross-section is a steady state
corresponding to (2.8). We refer to such a state as a helical filament lattice. For a general vortex lattice that is
not on a ring, we consider only periodic boundary conditions (so that q is a multiple of K in (2.7, 2.6, 2.11)). In
Section 4 we show that such a filament lattice is dynamically stable, provided that the underlying vortex lattice is
stable. However it can become energetically unstable for sufficiently small Ω. Some direct numerical simulations of
the proposed equilibria are given in 5, exploring our findings in the full 3D model, before raising some questions for
future study in Section 6.

3. STABILITY OF FILAMENT RING STATES

To analyze the ring stability, we deploy the complex variables-based technique of [48, 49] in order to examine the
circular Fourier modes of a ring. We start with a general perturbation of the (K, q) ring state as follows:

ξk(t, z) = ei2πk/K
(
eiωzr + φk(t, z)

)
, φk � 1. (3.15)

This yields the following linear system for φk :

(−iγ1 + γ2)φ′k = (D∂zz − Ω)φk + eiωz
∑
j 6=k

1

r2

1

4 sin2 (π (j − k) /K)

(
exp (2πi (j − k) /K) φ̄k − φ̄j

)
.

Next, we decompose the perturbation into Fourier modes using the following self-consistent anzatz:

φk = ei(α+ω)ze2πimk/Kφ+(t) + ei(−α+ω)ze−2πimk/K φ̄−(t). (3.16)

Collecting the like terms in ei(α+ω)ze2πimk/K and ei(−α+ω)ze−2πimk/K yields a 2x2 system:

(−iγ1 + γ2)φ′+ =
(
−D (α+ ω)

2 − Ω
)
φ+ + σ+φ−

(+iγ1 + γ2)φ′− =
(
−D (ω − α)

2 − Ω
)
φ− + σ+φ+

where

σ± =

K−1∑
j=1

1

r2

1

4 sin2 (πj/K)
(exp (2πij/K)− exp (±2πijm/K)) . (3.17)

Using identities from [48] (see (3.8) there), we obtain

σ+ = σ− = σ =
1

2r2
(m− 1) (K −m− 1) . (3.18)
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q = 0 q = 1 q = 2 q = 3 q = 4 q = 5 q = 6

K = 2

smax,e ∞ 4 0.6667 0.25 0.1333 0.08333 0.05714

(m,M) (1,0) (0,1) (0,1) (0,1) (0,1) (0,1)

K = 3

smax,e ∞ 18 4.5 1.333 0.6545 0.3956 0.2667

(m,M) (1,0) (1,0) (0,1) (0,1) (0,1) (0,1)

K = 4

smax,e ∞ 48 12 4.8 2 1.143 0.75

(m,M) (1,0) (1,-1) (0,1) (0,1) (0,1) (0,1)

K = 5

smax,e ∞ 100 25 11.11 5.128 2.667 1.681

(m,M) (1,0) (1,0) (1,0) (0,1) (0,1) (0,1)

K = 6

smax,e ∞ 180 40.63 16.28 10.16 5.625 3.333

(m,M) (1,0) (2,-1) (3,-2) (2,-2) (0,1) (0,1)

K = 7

smax,e ∞ 294 39.2 18.38 9.8 5.939 4.356

(m,M) (1,0) (3,-1) (3,-1) (3,-2) (3,-2) (3,-3)

TABLE I. Energetic stability classification with K ≤ 7, q ≤ 6. The ring is stable when 0 < s ≤ smax,e and is unstable
otherwise.

Upon substituting

φ±(t) = eλtε±

and using (2.14) to rewite D (α± ω)
2

+ Ω = K−1
2r2 +Dα2 ± 2Dωα we obtain a 2x2 eigenvalue problem(

γ2 − iγ1 0

0 γ2 + iγ1

)(
ε+

ε−

)
λ =

(
−δ+ σ

σ −δ−

)(
ε+

ε−

)
, (3.19a)

δ± =
K − 1

2r2
+Dα2 ± 2Dωα. (3.19b)

Next, recall that ξk(P ) = ξk+q(0). From (3.15), this implies that

φk(P, t) = ei2πq/Kφk+q(0, t)

so that
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ei(α+ω)P e
2πimk/K
+ φ+(t) + ei(−α+ω)P e−2πimk/K φ̄−(t) = ei2πq/K

(
e

2πim(k+q)/K
+ φ+(t) + e

−2πim(k+q)/K
− φ̄−(t)

)
. (3.20)

Upon substituting ωP = 2πq/K, we find that (3.20) is satisfied for all k if and only

α/ω = m+MK/q, where M ∈ Z. (3.21)

We summarize these computations as follows.

Proposition 3.1. [General Stability Formulation]. Consider the (K, q) ring state as given by Proposition 2.1.
Its stability is determined by a sequence of 2× 2 eigenvalue problems (3.19) where

δ± =
K − 1

2r2
+D

(
2π

P

)2 (mq
K

+M
)(mq ± 2q

K
+M

)
, σ =

1

2r2
(m− 1) (K −m− 1) .

Here, m is the azimuthal mode between the K filaments, whereas M is the Fourier mode along each of the filaments,
with the peturbation having the form

φk(t, z) = exp

(
i
2πz

P

(
mq + q

K
+M

)
+ 2πimk/K

)
φ+(t) + exp

(
i
2πz

P

(
−mq + q

K
−M

)
− 2πimk/K

)
φ̄−(t).

(3.22)

We now apply this general formula to two specific cases, namely γ2 = 0 to which we refer to as dynamical stability
(for the Hamiltonian case) or γ1 = 0 which we refer to as energetic stability (for the gradient system scenario).

3.1. Dynamical stability

To study dynamical stability (i.e. stability with respect to (2.3)), we set γ1 = 1, γ2 = 0 in Proposition 3.1. Then
λ satisfies (

ε+

ε−

)
λ =

(
δ+i σi

−σi −δ−i

)(
ε+

ε−

)
. (3.23)

so that

λ2 − i (δ− − δ+)λ+
(
δ+δ− − σ2

)
= 0,

having two solutions,

λ± =
i

2
(δ− − δ+)± 1

2

√
4σ2 − (δ + δ+)

2
.

It follows that the filament ring is dynamically stable if and only if

|σ| ≤ δ+ + δ−
2

. (3.24)

In this case, the eigenvalues λ± are purely imaginary. Otherwise, the steady state has saddle structure (with
Re(λ+) > 0 and Re(λ−) < 0). Recalling (3.18, 3.19c), the stability condition (3.24) is equivalent to:

K − 1 + 2r2D

(
2π

P

)2 (mq
K

+M
)2

≥ (m− 1) (K −m− 1) , for all m ∈ {1 . . .K − 1} ,M ∈ Z. (3.25)

We therefore define a dimensionless parameter

s :=

(
2π

P

)2

2Dr2. (3.26)

so that (3.25) can be written as s ≥ K(m−2)−m2+2

(mq
K +M)

2 . We summarize as follows.
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FIG. 2. Simulation of system (2.1) with K = 8, q = 1, γ1 = 1, γ2 = 0, D = 1/2. Top: r = 3.0 (stable regime). Bottom: r = 2.5
(unstable regime). The theoretical stability threshold is r =

√
8 = 2.828. The vertical axis shows max |ξ|−min |ξ| , versus time

t. Snapshots show the actual solution viewed from the top with t = 0, 10, 20 . . . 100, with different colours corresponding to
different filaments. Initial conditions consist of the the steady state, slightly perturbed at t = 0. Note that the destabilizing
mode m = 4 is clearly visible (bottom figure)

Theorem 3.2. [Dynamical stability]. Let

smin,d := max
m∈{1...K−1},

M∈Z

K(m− 2)−m2 + 2(
mq
K +M

)2 (3.27)

Then a (K, q) ring is dynamically stable privided that s > smin,d. where s is the dimensionless parameter given by

(3.26).

There are several important subcases.

� Case 1: K ≤ 7, any q. In this case, K(m− 2)−m2 + 2 ≤ 0 for all m ∈ {0, . . .K − 1} so that smin,d ≤ 0, and
it follows that a ring of K ≤ 7 filaments is dynamically stable for all r.

� Case 2: K ≥ 8 and gcd(q,K) 6= 1. Then there are integers m,M with m ∈ (1,K − 1) such that mq
K +M = 0,

while K(m− 2)−m2 + 2 > 0. This implies smin,d =∞; hence the ring is dynamically unstable for any r.

� Case 3: K ≥ 8, and q = 1. The most unstable mode turns out to be (m,M) = (4, 0) , with smin,d =
(
K−7

8

)
K2.

Note also that smin,d does not change when adding any multiple of K to q. Therefore we may assume without
loss of generality that q ∈ {0 . . .K − 1} . Table II lists smin,d the and associated destabilizing mode (m,M) for
several values of K and q.

Example. Take K = 8, q = 1. Then smin,d = 8. Figure 2 shows the numerical simulations of (2.3), with s to
either side of the stability boundary, in full agreement with the predicted stability.
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K = 8 :

q 0 1 2 3 4 5 6 7 8

smin,d ∞ 8 ∞ 64 ∞ 64 ∞ 8 ∞
m 4 4 3 4 3 4 4

M 0 −1 −1 −2 −2 −3 −4

K = 9 :

q 0 1 2 3 4 5 6 7 8 9

smin,d ∞ 20 1
4

324 ∞ 81 81 ∞ 324 20 1
4
∞

m 4 4 3 4 4 3 4 4

M 0 −1 −1 −2 −2 −2 −3 −4

K = 10 :

q 0 1 2 3 4 5 6 7 8 9 10

smin,d ∞ 37 1
2
∞ 300 ∞ ∞ ∞ 300 ∞ 37 1

2
∞

m 4 5 3 5 4 5 7 5 4

M 0 −1 −1 −2 −2 −3 −5 −4 −4

K = 11 :

q 0 1 2 3 4 5 6 7 8 9 10 11

smin,d ∞ 60 1
2

1210 968 484 242 242 484 968 1210 60 1
2
∞

m 4 6 4 3 7 4 3 4 5 7

M 0 −1 −1 −1 −3 −2 −2 −3 −4 −6

TABLE II. Dynamical stability for filament rings with K = 8, 9, 10, 11. Stability range is s ≥ smin,d where s =
(
2π
P

)2
2Dr2.

3.2. Energetic stability

Energetic stability corresponds to the study of the eigenvalue problem (3.19a) with γ2 = 1, γ1 = 0. In this case,

the eigenvalues are purely real since they are the eigenvalues of the symmetric matrix

(
−δ+ σ

σ −δ−

)
. Moreover,

the trace −δ+ − δ− is negative, see (3.19c). It follows that the filament ring is dynamically stable if and only if
determinant is positive, or

σ2 ≤ δ+δ−. (3.28)

Contrast this with the condition for dynamical stability (3.24): |σ| ≤ δ++δ−
2 . By the elementary inequality,

√
δ+δ− ≤

δ++δ−
2 for any δ± > 0, with equality if and only if δ+ = δ−, it immediately follows that energetic stability implies

dynamical stability. The former is associated with the geometric mean of δ+ and δ−, while the latter with the
arithmetic mean thereof. Of course the converse is false since in general, δ+ 6= δ−. (the exception is when either
q = 0 or m+MK/q = 0).

Written in dimensionless variable s =
(

2π
P

)2
2Dr2, the stability criterion (3.28) is equivalent to µ ≥ 0 where

µ :=

[
1 +

s

K − 1

(mq
K

+M
)(mq + 2q

K
+M

)][
1 +

s

K − 1

(mq
K

+M
)(mq − 2q

K
+M

)]
−(m− 1)

2

(
1− m

K − 1

)2

,

(3.29)
with the stability boundary corresponding to µ = 0. We summarize as follows.

Proposition 3.3. [Energetic stability]. The (K, q) ring is energetically stable privided that µ ≥ 0 for all
m ∈ {0, 1, . . .K − 1} and all M ∈ Z, with µ given by (3.29). It is unstable otherwise. A ring is dynamically stable if
it is energetically stable (but the converse is not true in general).

For further insight, first consider the case s → 0. One can think of this as the limit where the Laplacian term in
Eq. (2.3) is absent, as is the case, e.g., for point vortices (rather than filaments). Then,

µ ∼ 1−
(

(m− 1)

(
1− m

K − 1

))2

, s = 0 (3.30)

and the stability is independent of M or q. In this case, as is well-known for point vortices [50], the ring is stable if
K ≤ 7 and is unstable otherwise. So the case K ≤ 7 and K ≥ 7 must be analyzed separately.
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K 8 9 10 11 12 20 50 100 200 � 1

smin,d 8 20.25 37.5 60.5 90 650 13437 116250 965000 ∼ 0.125K3

smin,e 8.234 21.164 39.564 64.237 96 703.7 14677 127276 1057677 ∼ 0.137K3

smax,e 448 648 900 1210 1584 7600 122500 990000 7960000 ∼ K3

TABLE III. Stability classification for K > 7, q = 1. The ring is energetically stable iff smax,e ≤ s ≤ smax,e. It is dynamically
stable iff smin,d ≤ s.

Next, consider the mode (m,M) = (1, 0). Then µ simplifies to

µ =

(
1− s q2

(K − 1)K2

)(
1 + 3s

q2

(K − 1)K2

)
, (m,M) = (1, 0) . (3.31)

Therefore this mode is ustable when s > s(1,0) where

s(1,0) :=
(K − 1)K2

q2
. (3.32)

In fact, from (2.14, 3.26) note that the rotation rate Ω can be written as Ω = 2π
P D

(
K−1
s − q2

K2

)
. Thus the threshold

s = (K − 1)K2/q2 corresponds precisely to the zero-rotation rate Ω = 0.
Next, take (m,M) = (0, 1) in which case we obtain

µ =
s

(K − 1)
2
K2

[(
K2 − 4q2

)
s+ 2 (K − 1)K2

]
, (m,M) = (0, 1) (3.33)

When q < K/2, this mode is always stable. On the other hand, this mode is unstable if q > K/2 and s > s(0,1)

where

s(0,1) :=
2 (K − 1)K2

4q2 −K2
(3.34)

A bit of algebra shows that s(0,1) < s(1,0) whenever K/2 < q < K/
√

2.
Table III list the value of smax,e and the corresponding mode (m,M) for 2 ≤ K ≤ 7 and 0 ≤ q ≤ 6. With some

exceptions (such as (K, q) = (6, 3) or K = 7, q ≥ 2), the instability threshold corresponds to either s(0,1) or s(1,0).
Finally, consider the case K > 7. Then additional algebra shows that (K, q) with q 6= 1 is unstable for all s ≥ 0.

On the other hand, when q = 1, there exists a stability band smin,e ≤ s ≤ smax,e where it is stable, while it is
unstable outside this range. The upper bound corresponds to the mode (m,M) = (1, 0) given by smax,e = s(1,0).
On the other hand, additional computations reveal that the lower bound corresponds to the mode (m,M) = (4, 0) .
Upon substituting (m,M) = (4, 0) and setting µ = 0, we find that smax,e is the positive root of

s2 +
1

6
K2 (K − 1) s− 1

24
K4 (K − 4) (K − 7) = 0 (3.35)

For large K, this asymptotes to se ∼ K3
√

7−1
12 . We now summarize the above discussion as follows.

Proposition 3.4. The (K, q) ring with q > 0 is energetically unstable with respect to mode (m,M) = (1, 0) when
s > s(1,0), or equivalently, when Ω > 0. The threshold s = s(1,0) corresponds to rotation rate Ω = 0 so that such ring
is energetically unstable when Ω < 0.

Suppose that K ≤ 7. Then there exists smax,e such that a ring is stable if and only if 0 < s < smax,e. When

K/2 < q < K/
√

2, smax,e ≤ s(0,1) < s(1,0). Table III reports smax,e for small q.
Suppose that K > 7 and q = 1. Then the ring is energetically stable if and only if smin,e ≤ s ≤ smax,e where

smin,e = s(4,0) is the positive root of (3.35), corresponding to the mode (m,M) = (4, 0), whereas smax,e = s(1,0),
corresponding to the mode (m,M) = (1, 0).

Suppose that K > 7 and q 6= 1. Then the ring is energetically unstable.

Let us contrast dynamical and energetic stability. When K ≤ 7, the ring is dynamically stable for all q and s.
On the other hand, it is energetically stable only within the range 0 < s < smax,e. as given in Table III. When
K > 7 and q 6= 1, the ring is always energetically unstable. However it can be dynamically stable for s > smin,d as
long as gcd(K, q) = 1; see Table II. Finally when K > 7 and q = 1, the ring is energetically stable only in the range
smin,e ≤ s ≤ smax,e whereas it is dynamically stable in the range smin,d ≤ s. Table III gives a comparison between
smin,e and smin,d. Although not equal, these values are close to each other (within 9% for large K).
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FIG. 3. Left: stable vortex lattice with 20 point vortices, corresponding to the stable steady state of (4.37). The remaining
panels show the extension of this crystal to helical filament crystal with zero, 1 and 2 twists.

4. HELICAL FILAMENT LATTICE

Consider any relative equilibrium of point vortices η0
k satisfying (2.8). Then ξk(z) = eziωη0

k corresponds to a
filament equilibrium satisfying (2.4) with a shifted frequency Ω = Γ − Dω2. Moreover assume periodic boundary
conditions, so that

ω =
2π

P
l for an integer l. (4.36)

We refer to such configurations as helical filaments with l twists.
Suppose that the underlying vortex equilibrium is energetically stable in the x-y plane. In other words, η0

k is a
stable equilibrium of the system

d

dt
ηk = −Γηk +

∑
j 6=k

ηk − ηj
|ηk − ηj |2

. (4.37)

A relevant question then is what can be said, in general, about the associated 3D helical extension in terms of
stability. By analogy to vortex crystals, we refer to such filament configurations as helical filament crystals. An
example of a vortex crystal consisting of 20 vortices and its extensions are shown in Figure 3. We show the following
result.

Theorem 4.1. Let η0
k be a stable equilibrium of the system (4.37). Let ξk = exp (ωiz) η0

k be the corresponding
twisted filament relative equilibrium satisfying

0 = D
∂2

∂z2
ξk − Ωξk +

∑
j 6=k

ξk − ξj
|ξk − ξj |2

(4.38)

where Γ = Dω2 + Ω > 0. Assume periodic boundary conditions for z ∈ [0, P ], so that ω = 2π
P l, l ∈ Z. We have the

following:

� ξk is energetically stable (i.e. stable with respect to (2.5)) if and only if Ω > Ωmin,e where

Ωmin,e := D

(
2π

P

)2(
l2 − 1

2

)
. (4.39)

� ξk is dynamically stable (i.e. stable with respect to (2.3)) for all Ω.

Note that Ω could be negative as long as Γ > 0. The latter condition is necessary for the steady state to exist, see
(2.9). Before showing 4.1, we will need the following lemma.
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Lemma 4.2. Let η0
k be a stable equilibrium of the system (4.37). Let φ = (φ1, . . . φK) and define the operator

Lφ =
∑
j 6=k

−1(
η0
k − η0

j

)2 (φk − φj) . (4.40)

Suppose that µ is an eigenvalue of L̄L, where L̄ involves taking a conjugate of Eq. (4.40), i.e. L̄φ =
∑
j 6=k

−1

(η0k−η0j )
2 (φk − φj).

Then µ satisfies 0 ≤ µ ≤ Γ2. Moreover, the maximum is achieved: there is an eignevalue µ = Γ2 of L̄L.

Proof of Lemma 4.2. First, note that L is symmetric so that L̄L is positive definite and hence all of its
eigenvalues µ ≥ 0. To see that maxµ = Γ2, we linearize (4.37) around the equilibrium as ηk(t) = ηk + eκtφk to
obtain the problem

(κ+ Γ)φ = Lφ̄. (4.41)

where L is given by (4.40), and κ is the eigenvalue of the linearization of (4.37). Taking a conjugate, we have

(κ̄+ Γ) φ̄ = L̄φ.

Applying L̄ to both sides of (4.41) yields

|κ+ Γ|2 φ̄ = L̄Lφ̄ (4.42)

Since (4.37) is the gradient flow of the associated energy E = −Γ
∑
k
|ηk|2

2 +
∑∑

j 6=k log |ηk − ηj |, the relevant
eigenvalues κ are all purely real. Therefore we have

(κ+ Γ)
2
φ̄ = L̄Lφ̄. (4.43)

It follows that (κ+ Γ)
2

= µ for some eigenvalue µ of L̄L. Conversely, the matrix L̄L has K eigenvalues whereas the
linearization of problem (4.37) has 2K eigenvalues. Therefore κ = −Γ±√µ are both eigenvalues of the linearization

of Eq. (4.37) for any given eigenvalue µ of L̄L. Given the stability assumption above for η0
k, it follows that κ =

−Γ ± √µ ≤ 0 or µ ≤ Γ2. Finally, the problem (4.37) admits a zero eigenvalue κ = 0 corresponding to rotation

invariance, so that µ = Γ2 is the maximum eigenvalue of L̄L. �
Proof of Proposition 4.1. We first prove (a). Linearize equations (2.5) as

ξk(z, t) = ξk(z) + φk(z, t), φk � 1 (4.44)

to obtain

(∂t + Ω−D∂zz)φ = e2iωzLφ̄ (4.45)

where φ = (φ1, . . . φK)
T

and L is the linear operator (4.40).
Next we use the following anzatz:

φ = φ+(t)ei(ω+α)z + φ̄−(t)ei(ω−α)z.

to obtain

(∂t + Ω +D (ω + α)
2
)φ+ = Lφ−; (∂t + Ω +D (ω − α)

2
)φ̄− = Lφ̄+; (4.46)

Taking complex conjugate of the second equation we get

(∂t + Ω +D (ω − α)
2
)φ− = L̄φ+. (4.47)

Finally we take

φ± = eλtε± (4.48)

to obtain

(λ+ Ω +D (ω + α)
2
)ε+ = Lε−, (λ+ Ω +D (ω − α)

2
)ε− = L̄ε+.

We apply L̄ to the first equation o obtain(
λ+D (ω + α)

2
+ Ω

)(
λ+D (ω − α)

2
+ Ω

)
= µ (4.49)
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where µ is eigenvalue of L̄L. In terms of Γ this becomes

λ2 + 2λ
(
α2 + Γ

)
+Dα2

(
Dα2 − 4Dω2 + 2Γ

)
+ Γ2 − µ = 0. (4.50)

Therefore a necessary and sufficient condition for stability is that Dα2
(
Dα2 − 4dω2 + 2Γ

)
+Γ2−µ ≥ 0 for all admissi-

ble α, µ. By Lemma 4.2, 0 ≤ µ ≤ Γ2 with maxµ = Γ2. So the stability condition becomes Dα2
(
Dα2 − 4dω2 + 2Γ

)
≥

max(µ) − Γ2 = 0. Upon substituting Γ = Dω2 + Ω, this is equivalent to Dα2 − 2Dω2 + 2Ω ≥ 0, or Ω ≥
maxα,α6=0D

(
ω2 − α2

2

)
. This is maximized when M = ±1, α = 2π/P, showing (4.39).

We now show part (b). Linearizing (2.5) in the same way as part (a), we obtain

(−i∂t + Ω +D (ω + α)
2
)φ+ = Lφ−;

(i∂t + Ω +D (ω − α)
2
)φ− = L̄φ+.

and instead of (4.49) we obtain (
−iλ+D (ω + α)

2
+ Ω

)(
iλ+D (ω − α)

2
+ Ω

)
= µ (4.51)

so that λ satisfies

λ2 + iλ4Dωα+Dα2
(
Dα2 − 4Dω2 + 2Γ

)
+ Γ2 − µ = 0. (4.52)

After some algebra we obtain

λ =
(
−2Dωα±

√
Dα2 (Dα2 + 2Γ) + Γ2 − µ

)
i

By Lemma 4.2, µ < Γ2 so the expression under the square root is always positive. This shows that λ is purely
imaginary for all parameter values which proves dynamical stability. �

Example: filament ring. First, we verify that this result agrees with stability of ring solutions, refer to Figure
4. For periodic solutions, l = q/K must be an integer. For example, take K = 6, q = 6; from table II; we read the

threshold of smax,e = 3.33. Recalling (2.14, 3.26), we have Ω = 2π
P D

(
K−1
s − q2

K2

)
= D

(
2π
P

)2 · 0.50. This coresponds

precisely to (4.39) with l = 1 = q/K. Numerical simulations with D = 0.5, P = 2π, Ω = 0.24 are shown in Figure
4 (top). For this value, Ω < Ωmin,e = 0.25 and as expected, an instability is observed. This instability leads to
a finite-time “collapse” around t ≈ 339.5, corresponding to the crossing of the filaments. Continuing numerical
simulations of (2.3) beyond this collapse leads to another (stable) ring, this time with l = 0.

Example: crystal filament lattice. For more than 7 point vortices, the energetically preferred state is a “lattice”
such as shown in Figure 3. As in the preceeding example, taking P = 2π,D = 1/2, we find that Ωmin = 0.25 when
l = 1 (indeed Ωmin only depends on l and not on the number of filaments). Simulation of (2.3) with Ω = 0.26 and
l = 1 exhibits a stable state. On the other hand, decreasing Ω = 0.24 results in an instability of the l = 1 lattice, as
illustrated in Figure 4.

We remark that Ωc is always positive since ω ≥ 2π/P . Note that the more twisted (bigger ω) the configuration is,
the bigger the rotation Ω should be to stabilize it. Also for an infinitely long filament (P =∞), the equation (4.39)
reduces to Ωmin = 0.

5. COMPARISON TO FULL NUMERICAL SIMULATIONS OF GP EQUATIONS

In this section we discuss our simulations of the full solution of the governing GP PDE in 3D. Recall that the
latter is the natural starting point for deriving the KMD model, as discussed, e.g., in [38]. The GP equation reads:

i
dψ

dt
= −1

2
∇2ψ + V (R)ψ + g|ψ|2ψ. (5.53)

Here g = 4πNa/lR and a is the s-wave scattering, lR is the axial oscillator length:
√
~/mωR with R being the

axial coordinate (R2 = x2 + y2), m is the atomic mass, and ωR is the axial trap frequency. In our simulations
we have rescaled the length by lR, time by 1/ωR and the energy by ~ωR to get the form in (5.53). Throughout
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FIG. 4. Top: Simulations of (2.3) starting with a ring (K, q) = (6, 6) and with D = 0.5, Ω = 0.24. Instability is observed,
followed by a finite-time collapse as the filaments cross each-other. Continuing the simulation after the collapse leads to a
stable ring of straight filaments. Bottom: Simulations of (2.3) with K = 20 filaments and with initial conditions as in Figure
3 with l = 1. The remaining parameters are the same as above.

this manuscript, we work in these scaled dimensions which are tantamount to the dimensions used in the reduced
system of Eq (2.1). This affords us the opportunity to connect our results to those of the full 3D field theory. The
vortex lines (constituting the filaments of our effective filament model) are topological defects in the complex order
parameter of the GP theory on which there is a vanishing of the density (|ψ|) and around which a suitable winding
of the phase takes place. It is via these features that we identify and visualize the vortex filaments in the numerical
results described below.

As our choice of trapping for V (R), we simulated both an axial harmonic trap ( 1
2R

2 = 1
2 (x2 + y2)) and a flat

bottom trap. We present the flat bottom trap results to remove the effect of an inhomogeneous background density
profile. This potential has harmonic confinement beyond R0, so V (R) = 1/2(R − R0)2Θ(R − R0) where Θ(x) is a
Heaviside function that is 1 when x ≥ 0 and zero otherwise. We have picked R0 = 4, and we have tested that this
does not influence vortex motion when they are well within this radius (i.e., for R ≤ 2).

The chemical potential µ is chosen to be large (30-42 ~ωr), so this gives a small healing length, ξ, as 1/
√
µ. In

addition to r (the ring filament radius) and P (the size of the domain along the z axis), the healing length defines
a scale in the simulation which complicates the comparison with the filament method. We have picked the r to be
in the range of 1-2, so it is much larger than ξ and much smaller than R0. This range of r usually means that the
initial separation between vortex filaments is much larger than ξ and hence the latter scale does not have a critical
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FIG. 5. Comparison of the full simulation of (5.53) and the theory (of Eq. (2.14)). Simulations are done for (K, q) = (2, 2)
ring with fixed r (either r = 1 or r = 2), and for several values of box height P, and the resulting rotation rate Ω is then
recorded. The theory of Eq. (2.14) predicts a linear relationship between Ω and P−2 which is verified in the direct numerical
computations of the 3D GP PDE of Eq. (5.53).

role in the dynamics.
The time propagation of Eq.(5.53) takes place with a third-order operator splitting Fourier spectral method using

time steps of 5 × 10−4. The spatial grid has 1283 points and with a grid spacing of 0.15lR in x and y, while dz is
varied to get a desired P . We used periodic boundary conditions for all simulations of the vortex twists. We find
the initial condition by first imprinting the phase with the ansatz:

ψ(x, y, z)/|ψ| = Πjtan−1(x− xj , y − yj), (5.54)

where xj , yj is the position of the j-th vortex core. Thus, the total phase is simply the sum of all the vortex core
phases. After the phase is defined, we evolve ψ in imaginary time to relax the density. Once the energy changes by
less than 10−8~ωr, we consider the initial condition converged. The phase imprinting locks the vortices in place, and
only the density is changed at this stage, so the configuration (to which the dynamics locks) can be metastable.

To find stationary states in the full simulations we must vary the simulation box height. An example of this is
shown in Fig. 5, where we show plot the rotational velocity of the vortex twist as a function of 1/P 2. Here we can
see that Ω (measured in radians per trap unit of time) crosses zero at a particular value of 1/P 2. In addition, for
r=1.5, we show the extracted data from simulations with two different chemical potentials, 30 and 42 ~ωR. KMD
theory predicts that Ω is a linear function of 1/P 2, see (2.14). This is validated with full GP simulations as seen in
Fig. 5.

We now consider three illustrative examples of for K = 2, 3, and 4 with q = K.
For K = 2 and 3, we were able to find the P that essentially froze the motion of the vortices. In these figures, the

3D vortex cores are shown as red lines. The vortex positions are extracted by finding the phase singularity on the
computational grid [51]. We refine the vortex positions using methods from Refs. [52, 53]. We also project the vortex
core positions on the sides of the figure. Additionally, we have shown the projected density of the BEC projected as
thin contours on the sides of the figure. Figure 6 shows the full simulations for K = 2, 3 with q = K. Such a filament
ring appears to be stable (and practically stationary) regardless of the initial radius r. This is in agreement with the
results in Section 3 3.1, which show that such a ring is dynamically stable for all parameters (even though it may be
energetically unstable, see Section 2). Recall that the Hamiltonian GP model of Eq. (5.53) is connected at a reduced
level with the KMD filament setting of Eq. (2.1) (rather than with the gradient dynamics of Eq. (2.5)).

Figure 7 shows the full simulations with K = 4, q = 4. The simulation is initially stationary, but eventually the
vortex twist gains a collective motion that is depicted in the snapshots. This destabilizes the configuration which
is apparently dynamically unstable. Additionally in Figure 7(f), we show the same vortex configuration with slight
perturbations on the initial condition. The end result is that the system never appears stationary and has a much
more disordered appearance. Indeed, what we expect here is that the correspondence between the KMD filament
model and the complex 3D dynamics of the GP of Eq. (5.53) may break down as one goes to a regime involving a
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FIG. 6. For K = 2 (top) and K = 3 (bottom), the vortices appear stable and are very nearly stationary. For K = 2, the
times in trap units are (a) 0, (b) 125, and (c) 250. For K = 3, the simulations were run for 1.5 million times steps, three times
longer than usual, to test stability. The times shown are (d) 0, (e) 500 and (f) 750 in trap units. The vortices are shown as
red points and their project is seem in the side as bold black points. The projected density contours are shown as this black
lines on the sides.

large number of filaments rotating at small distances from one another. Nevertheless, we believe that the above select
examples suggest the analysis of the KMD model as a useful tool for identifying multi-vortex-filament configurations
in the original PDE system of relevance to a wide range of (e.g., atomic, optical and hydrodynamic) applications.

6. DISCUSSION

Our aim in the present work was to explore the dynamical reduction afforded by the KMD model in order to
propose exact, analytically tractable solutions at the level of multiple vortex filaments (in particular, filament rings
and lattices). Moreover, this reduced description enabled a systematic characterization of the stability of such states
both at the level of dynamical stability (of the original Hamiltonian problem), as well as at that of energetic stability
(relevant to the gradient flow of Eq. (2.5)). We illustrated that while the more stringent conditions for energetic
stability imply dynamical stability, the converse is false. The relevant conditions of stability for the vortex filaments
depend on the number of filaments (and the relevant periodicity) with, e.g., K ≤ 7 leading to dynamical stability.
On the other hand, for the helical filament lattices we could establish that the configuration is dynamically stable
provided that the underlying vortex configuration is energetically stable in the two-dimensional plane. We have
gone on to explore some prototypical ones among these results in a fully 3-dimensional simulation of the original
Gross-Pitaevskii model from which the filament KMD reduction was obtained. We have seen that in some of the
simpler settings involving e.g. 2 or 3 filaments, the results of the 3D simulation are in line with those of the reduced
case. However, for larger numbers of filaments, we found potential instabilities in the original model that were not
mirrored in the reduction. A systematic exploration of the breakdown of the model for larger numbers of filaments
is a particularly interesting topic for future study.

Naturally, there are numerous directions that our study paves towards future work. For instance, one possibility
that we have touched upon and which is illustrated in Figure 8 for K = 20, q = 1 is to use D as the bifurcation
parameter (while we fix Ω = 1). In that case, we find that the energetic stability boundaries appear to be supercritical



16

FIG. 7. For K = 4, the vortices initialy appear to be stationary, but then a collective motion breaks out and the vortex
configuration scrambles. The times shown are (a) 0, (b) 58, (b) 61, (d) 70, and (e) 250 in trap units. (e) The last snapshot is
the same configuration with perturbations on the initial position of the vortices and because of these it quickly evolves out of
the initial configuration. For this simulation the time shown is 100.

FIG. 8. Energetically stable configurations of a single vortex filament wrapped around 20 times (so that K = 20, ξk(P ) =
ξk+1modK(0)). The figure shows the view looking down the z-axis (i.e. the projection onto x-y plane). Here, Ω = 1 and
P = 2π with D as indicated. Each snapshot corresponds to the numerically computed steady state of (2.5). For large D
(D > Dmin = 40.8), the steady state is a ring-like configuration. For small D, most x-y cross-sections show a 2D vortex crystal
structure.

and can lead to bifurcations of novel nearby stable equilibria. For this particular example, the thresolds smin,e =
703.7, smax,e = 7600 (from Table III) then correspond to D = 40.8 and D = ∞, respectively. As D is decreased
past 40.8, a mode-4 instability destabilizes the ring. This instability appears to be supercritical: while the ring
is energetically unstable, a nearby mode-4 pattern appears to be stable, and the system converges to it. As D is
decreased further, subsequent bifurcations are observed. In the limit D → 0, the various z- cross-sections decouple and
each cross-section looks like a point vortex lattice; these layers are connected through sharp transitions. Numerical
experiments suggest that bifurcations in Figure 8 are reseversible: as D is increased, the steady state straightens
itself out, eventually resulting in a single ring. Our numerical experiments suggest the following conjecture worth
pursuing in future studies:

Conjecture 6.1. For boundary conditions ξk(P ) = ξk+1 modK(0) in the limit D →∞, the only energetically stable
equilibrium is the q = 1 ring.

Furthermore, there are numerous open questions related to filament interactions and non-equilibrium solutions;
see, e.g., [54] for some recent results on two-filament interactions. But even for equlibrium states, a whole zoo of
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FIG. 9. A selection of non-helical energetically stable relative equilibria obtaned by solving (2.5) numerically. (a) Inital
conditions consist of a helical ring (K, q) = (20, 2) and converge to a double-ring solution when D = 10. A cascade of
bifurcations is observed as D is decreased. (b) Taking initial conditions (K, q) = (20, 4) with D = 10 and D = 30. Note the
“triple-ring” solution. (c) Mixed helical state (d) Three filaments with D = 0.1, starting from different initial conditions. The
resulting states exhibit high symmetry and sharp boundary layers.

other “exotic” (non-helical) relative equlibria exist, as illustrated in Figure 9 in connection to the gradient flow of
Eq. (2.5). In this figure, we observe different types of energetically stable equilibria resulting from initial conditions
with different combinations of (K, q), for a few distinct values of D. The helical states we considered in this paper only
scratch the surface of what is possible and provide a sense of the wealth of associated possibilities. Understanding the
emergence/bifurcations of such states, but also the energy landscape and dynamics associated with them provide, in
our view, a fascinating potential for further exploration.
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