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Abstract. We present and test an effective algorithm to recover multiple small heterogeneities
inside arbitrary three dimensional bounded regions. In applications of electrical impedance tomog-
raphy (EIT), such heterogeneities might represent tumours inside the body, weaknesses or cracks
in a solid material or subterranean mineral deposits. The algorithm determines the location of all
K heterogeneities using a single boundary measurement. The only nonlinear step in the algorithm
is to find K roots of a single polynomial of degree K. The efficacy of this method is demonstrated
by full numerical computation of the three dimensional forward problem. In addition, the methods
employed can give information regarding the shape of irregular heterogeneities.

1. Introduction

The problem of inverse electrical impedance tomography (EIT) is to reconstruct the conductivity
inside a cavity by applying a current to its periphery and measuring the response voltage. It is a
classical problem which has been extensively studied since at least 1950’s [1]; we refer the reader
to reviews [2, 3] for an extensive list of applications and more recent works. The mathematical
formulation of this problem is as follows. Let u be the voltage and σ be the conductivity inside a
given bounded region Ω ⊂ Rd for d = 2, 3. An input current g(x) is applied along the boundary of
the domain ∂Ω so that

(1)

{

∇ · (σ∇u) = 0, x ∈ Ω;

σ∂νu = g(x), x ∈ ∂Ω,

where ∂νu represents the outward facing normal derivative. The problem of EIT is to reconstruct
the conductivity σ from measurements of the voltage on the boundary ∂Ω, ie. from f(x) = u|∂Ω.
An important special case is when the conductivity is nearly uniform except for several small

defects. In applications, these defects may represent a cancer [4, 5], a buried land-mine [6], material
weaknesses or corrosion in a solid structure [7, 8]. That is, consider a collection of K small non-
overlapping inclusions {Dj}Kj=1 ⊂ Ω, and a conductivity profile σ of form

(2) σ(x) =

{

κj , x ∈ Dj ,

1, x ∈ Ω \ ∪K
j=1Dj.

The values {κj}Kj=1 represent variable conductivities in each of the inclusions. A well-studied
problem, especially in two dimensions, is to determine the location and shape of these discrete
inclusions [9, 10, 11, 12, 7, 13, 14, 15, 16, 17, 18].
An effective algorithm for determining the location of a single defect is described in [10]. It

is based on a layer potential reformulation of the problem and is applicable to arbitrary domains
1
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in two or three dimensions. This algorithm was improved in [12] where the authors introduced a
more robust variation of this method, called “the effective dipole method”. These, and many other
methods, use the “dipole approximation”; the fact that small inclusions effectively act as dipole
forces.
For multiple inclusions, the problem was considered in [11] where an algorithm to recover K

inclusions using only two boundary measurements was given. This was improved in more recent
work by [9], where the authors give an algorithm which recovers multiple inclusions using a single
measurement.
In the present work, we develop and test an algorithm for recovery of multiple inclusions inside an

arbitrary three dimensional domain using a single measurement. The algorithm is an extension of
the two-dimensional algorithm in [9] to three dimensions, using ideas developed in [19, 20, 21, 22].
In two dimensions, we also show that the algorithm developed in [12] is a special case of the method
presented in [9]. The method proposed herein generalises the very recent treatment of (c.f. [23]) to
the problem of finding a single dipole inside a sphere. For spherically shaped inclusions, in addition
to recovering their locations, the algorithm also recovers their radius, provided that κj is known.
Moreover as we illustrate on several numerical examples, irregularly shaped inclusions (such as a
box) can often be effectively approximated and recovered by multiple spherical inclusions.
In our derivation of the algorithm, the well known (cf. [13, 18]) asymptotic formulation of

solutions to (1) in the limit of small inclusion plays a crucial role. More specifically, if each inclusion
has a common scaling D̄j = ε−1Dj where D̄j are fixed, then as ε → 0,

(3) u(x)− u0(x) = −εd
K
∑

j=1

∇u0(ξj)Mj ∇yN(x, ξj) +O(εd+1).

holds at points x ∈ Ω away from the inclusion centres {ξj}Kj=1. An associated transmission problem
can be formulated for the voltage u in the case where |x − ξj| ≪ 1 [3], however, in the present
work we only evaluate u(x) − u0(x) along ∂Ω and stipulate that ∂Ω ∩ {ξj}Kj=1 = ∅. In the above
formulation (3), u0(x) is the solution in the absence of heterogeneities and solves the calibration
problem:

(4) ∆u0 = 0, x ∈ Ω; ∂νu0 = g, x ∈ ∂Ω;

∫

∂Ω

g = 0.

The condition
∫

∂Ω
g = 0 is required for equation (4) to admit a consistent solution. The other key

constituents of (3) are the polarisation matrices {Mj}Kj=1 which are determined by the shape of

each D̄j and N(x, y), the Neumann function for Ω. The asymptotic formulation is derived with
the assumption that the inclusions are well separated in the sense that |ξi − ξj| = O(1) for i 6= j
as ε → 0. The problem of locating multiple closely spaced small inclusions was studied in [24] and
an algorithm developed to detect some of their geometric features from an effective polarisation
tensor.
As a consequence of (3), the following problem becomes central to our considerations;
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Problem 1: Suppose that u(x) satisfies:

(5)











∆u =
K
∑

j=1

wj · ∇δ(x− ξj), x ∈ Ω;

u(x) = f(x), ∂νu(x) = g(x), x ∈ ∂Ω.

Given f(x) and g(x), determine ξj and wj, j = 1 . . .K.
In fact, we describe a constructive algorithm to solve Problem 1 for three dimensional domains

Ω. The points ξj recover the locations of the inclusions whereas the vectors wj are related to the
shape of the inclusion via the polarisation matrix. Specialising to the case where Dj = Bεj(ξj) is
a ball of a small radius εj centred at ξj, the explicit computation of the polarisation tensor yields
[13],

(6) wj =















2π∇u0(ξj)
1− κj

1 + κj

ε2j , in R
2;

4π∇u0(ξj)
1− κj

2 + κj

ε3j , in R3.

This formula will be used in numerical tests in §3 below.
As was done for two dimensions in [9], in three dimensions, Problem 1 is reduced to finding K

roots of a certain complex polynomial of degree K, plus solving several linear systems. In this
sense, the algorithm is deterministic (non-iterative except for finding the roots of a K-th degree
polynomial, which is a standard numerical procedure). Note that in three dimensions, there are
6K unknowns (three components for each of ξj and wj) that must be recovered. This makes a
deterministic method especially valuable, since iterative methods often have convergence problems
when faced with so many unknowns.
We remark that in [25], the authors considered a more general problem than Problem 1 in

two dimensions; namely, they considered sources that consisted of both dipoles and monopoles.
However, only dipoles arise in the asymptotic reduction of (1); so we do not include the monopoles
in (5).
The efficacy of these algorithms is demonstrated on a number of sample problems comprised of

multiple inclusions inside non-spherical domains. We employ the finite element solver FlexPDE to
obtain a numerical solution to the forward problem (1) and the boundary data f(x) = u|∂Ω for
general regions. Numerical experiments confirm the relative robustness of our algorithm (typical
values we tried are K = 4 with 24 unknowns to solve for in R

3). Interestingly, despite the fact that
the algorithm is designed to find small ball-like inclusions, it can provide information on the shape
of more general small inclusions through approximation by multiple ball-like inclusions. We now
state our main results.

1.1. Description of the algorithm. We now state the algorithm in three dimensions (In Appen-
dix A, we include Algorithm 2, the solution to Problem 1 in the 2D case [9]).

Algorithm 1. (Solution to Problem 1 in R3).
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1. Compute the 2K complex integrals

(7) An =

∫

∂Ω

f(y)(y1 + iy2)
n−1(ν1 + iν2)dS(y)−

∫

∂Ω

1

n
g(y)(y1 + iy2)

ndS(y), n = 1 . . . 2K

where ν = (ν1, ν2, ν3) is the normal vector, and i =
√
−1.

2. Solve the system

(8) An =

K
∑

j=1

ωjη
n−1
j , n = 1 . . . 2K

using Lemma 1 (see below) to recover ωj, ηj. The first two components of ξj, wj are then
given by (ξj1, ξj2) = (Re(ηj), Im(ηj)) and (wj1, wj2) = (Re(ωj), Im(ωj)).

3. Compute the 2K complex integrals

Bn =

∫

∂Ω

f(y)
{

(n− 1)(y1 + iy2)
n−2y3(ν1 + iν2) + (y1 + iy2)

n−1 ν3
}

dS(y)

−
∫

g(y)(y1 + iy2)
n−1y3dS(y), n = 1 . . . 2K.(9)

4. Solve the linear system of 2K variables

(10) Bn =
K
∑

j=1

(n− 1)ηn−2
j ωjξj3 + ηn−1

j wj3, n = 1 . . . 2K

for the third components ξj3, wj3, j = 1 . . .K.

We make several observations. There are three numerical tasks involved: computing 4K complex
surface integrals (7,9); computing the roots of a K−th degree polynomial; and solving several linear
systems of O(K) variables. To compute the integrals, one must discretise the surface of the domain
using N meshpoints with N ≫ K. The only nonlinear step is solving for K roots of a K-degree
polynomial, which is a standard numerical routine. The total running time is then of O(KN) as
computing the integrals is the most time-consuming of the three tasks, assuming that K ≪ N .
The number K itself can also be algorithmically determined, using the techniques described in [11].
Finally, we remark that the solution to (10) typically results in ξj3 and wj3 having small imaginary
parts due to imperfections in measurement; for the practical implementation, the small imaginary
parts are simply discarded.
Algorithm 1 relies upon solving the system (8) for the 2K unknowns ωj, ηj , j = 1 . . .K. The

requirement to solve such systems has arisen frequently in many recent works, (cf. [26, 22, 19, 11,
9, 21, 25]). A common and effective method to solve this problem, stated below, reduces the system
(8) to finding the roots of a K-th degree polynomial. For a derivation, see [26].

Lemma 1. Consider the system of 2K equations

(11) cn =
K
∑

j=1

αjβ
n
j , n = 0 . . . 2K − 1.
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for the 2K unknowns {αj}Kj=1
, {βj}Kj=1. Then {βj}Kj=1 are the K roots of the polynomial

(12) βK + l1β
K−1 + . . .+ lK−1β + lK = 0

where the coefficients l1 . . . lK satisfy the linear system:

(13)









c0 c1 . . . cK−1

c1 c2 . . . cK
...

...
cK−1 c2 . . . c2K−2

















lK
lK−1

...
l1









=









−cK
−cK+1

...
−c2K−1









.

Once {βj}Kj=1 are computed, {αj}Kj=1 are obtained by solving the linear system given by the first K
equations of (11).

2. Derivation of Algorithm 1.

Algorithm 1 combines the ideas of [9, 19, 21]. Given any harmonic function v(y) which satisfies
∆v = 0 inside Ω, multiply (5) by v and integrate by parts. This yields the identity

(14)

∫

∂Ω

f(y)ν · ∇v(y)dS(y)−
∫

∂Ω

g(y)v(y)dS(y) =

K
∑

j=1

wj · ∇v(ξj).

Next we take v(y) = |y|n Y m
n (ŷ), where ŷ = y/ |y| and Y m

n is the spherical harmonic, to obtain

(15)

∫

∂Ω

f(y)ν · ∇y (|y|n Y m
n (ŷ)) dS(y)−

∫

∂Ω

|y|n Y m
n (ŷ)g(y)dS(y) =

K
∑

j=1

wj · ∇ξ

(

|ξj|n Y m
n (ξ̂j)

)

.

In principle, the expression (15) yields an arbitrarily large number of identities relating the un-
knowns wj , ξj to the (known) integrals. Following [19, 21], we first consider the particular sequence
of these identities corresponding to m = n. Note that

|y|n Y n
n (ŷ) = C(y1 + iy2)

n

for a known constant C independent of y and that

ν · ∇y (|y|n Y n
n (ŷ)) = Cn(y1 + iy2)

n−1(ν1 + iν2).

Then, applying this expression to (15) with m = n yields

(16)

∫

∂Ω

[

f(y)n(y1 + iy2)
n−1(ν1 + iν2)− g(y)(y1 + iy2)

n
]

dS(y) =
K
∑

j=1

nηn−1
j ωj .

where we used the notation ηj = ξ1j + iξ2j ; ωj = w1j + iw2j . This identity is precisely the sequence
given by (7-8), which determines the first two coordinates of ξj and wj. To determine the third
coordinate, we choose m = n− 1 in (15). From this, we obtain

|y|n Y n−1
n (ŷ) = C(y1 + iy2)

n−1y3

which in turn gives

ν · ∇y

(

|y|n Y n−1
n (ŷ)

)

= C
{

(n− 1)(y1 + iy2)
n−2y3(ν1 + iν2) + (y1 + iy2)

n−1 ν3
}

.
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This yields the second sequence of identities,

(17)

∫

∂Ω

f(y)
{

(n− 1)(y1 + iy2)
n−2y3(ν1 + iν2) + (y1 + iy2)

n−1 ν3
}

− g(y)(y1 + iy2)
n−1y3dS(y)

=

K
∑

j=1

(n− 1) ηn−2
j ξ3jωj + ηn−1

j wj3.

These identities correspond to those presented in (7-10). The derivation now complete. �

3. Numerical experiments

We now perform several experiments to test the robustness of Algorithms 1 and 2. For all
experiments, we have used the finite element solver FlexPDE to obtain the solution of the forward
problem (1). This package uses adaptive mesh generation and local and global error controls. The
user-specified error tolerance was chosen to be 10−5; we verified that changing this tolerance did not
change the results. For all of the examples below, we have used ∂νu = g(x) = x2 as the boundary
condition with internal conductivity κ = 19 in (2). Once the constants wj and ξj were recovered
using Algorithm 1 or 2 (cf. Appendix A for Algorithm 2), the connection formulae (6) were then
used to recover the inclusion radius.
The integrals such as (7) were computed as follows. First, the output values generated by

FlexPDE on the boundary of the surface were exported to Matlab. These points were then used
to generate a surface mesh using Matlab’s convhulln function. For a typical example such as
experiment 1 below, this resulted in a total of about 1800 meshpoints. The resulting surface mesh
was used to generate the normals and surface elements and compute the required integrals.

Figure 1. Recovery of four spherical inclusions inside a sphere (experiment 1). Left:
the test configuration. Middle: no noise. Right: 2% noise.

Experiment 1. We take the domain to be unit ball with K = 4 spherical inclusions of varying
size inside. The configuration and its recovery is shown in Figure 1; the sizes of four holes are
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ε = 0.2, 0.2, 0.25, 0.3. Without any noise, excellent recovery is observed. To test the method’s
resilience to uncertainty in the measured data, we added 2% random perturbations to the output
data of the forward solver. The right pane shows five distinct realisations of the recovery with
noise. Note that the biggest inclusion exhibits the best recovery. Overall, very good agreement is
observed.

Figure 2. Recovery of three heterogeneities in a muffin-shaped domain (experiment
2). Middle: zero noise. Right: 2% noise.

Experiment 2. To demonstrate the efficacy of the recovery algorithm in more general regions,
and not just spherical ones, we consider here a “muffin” shaped domain, as shown in Figure 2.
It consists of the intersection of the top surface z = 1

2

(

1 − (x2 + y2)
)

and the bottom surface

z = −
(

1 − (x2 + y2)
4
)

. Three spherical “raisins” of radii 0.15, 0.25, 0.3 are placed inside the
“muffin”. As in Experiment 1, the middle pane shows the recovery of the heterogeneity locations in
the absence of noise, while the right pane shows five simulations of recovery with 2% random noise.
Without noise, excellent recovery is observed. With noise, the biggest inclusion is still recovered
relatively well.
Experiment 3. Consider a box-shaped anomaly inside a sphere as in Figure 3. We attempt its

recovery by applying Algorithm 1 with K = 1, 2, 3. When K = 1, the recovered inclusion location
captures well the centre of the box. Running the algorithm with K = 2, the two resulting inclusions
approximate the box even better. Finally, K = 3 yields two inclusions which are identical to K = 2,
plus a spurious inclusion of a very small radius (which appears as a smudge in the right pane).
This indicates that the matrix in (13) is nearly singular when K = 3, and that K = 2 is a good
place to stop.
Experiments 4. Figure 4 shows the recovery in two dimensions for a circular and a clover-

shaped domain. The recovery is performed with no noise, 2% and 4% noise. For the noisy data,
five different random realisations are shown. In the presence of noise, bigger inclusions are generally
recovered better than the smaller ones. This is not surprising, since the smaller inclusions have less
of an “imprint” on the boundary and become swamped as noise is increased.
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Figure 3. Recovery of a box-shaped inclusion inside a sphere using K = 1, 2, 3
disks (experiment 3). The original box is parallel to the axes and has corners at
(0.15, 0.55, 0.15) and (−0.15,−0.35,−0.15).

Experiment 5: L-shaped inclusion. In the final experiment, we attempt to recover an L-
shaped inclusion in Figure 5. The output of Algorithm 2 with K = 1 . . . 8 is shown. Note that the
corners are recovered surprisingly well when K = 8.

4. Discussion

In this paper we tested an algorithm to recover K small inclusions inside a three-dimensional
domain. It is based on the methods introduced in [9, 19, 21] for the two-dimensional case. It
generalises the algorithm discussed in [23] in two ways: it is applicable for an arbitrary domains,
and it is able to systematically handle multiple inclusions.
In [23], the authors write “given that these multi-source inverse problems are finite-dimensional,

it may then be better to abandon the analytical approach and resort to a numerical method”. We
show that the numerical problem of identifying K dipoles in three dimensions for an arbitrary
domain (which involves 6K unknowns), can be reduced to solving a single K degree polynomial,
plus several systems of linear equations.
In [23], a recovery of a single source for Helmholtz equation was studied; the recovery of multiple

sources was recently addressed for a single known wavelength was addressed in [27]. Unlike the
EIT problem, the method in [27] only works in three dimensions and does not easily generalise to
a two-dimensional setting. Recovering multiple sources for Helmholtz equation in two dimensions
is still an open question.
In the presence of noise, higher spherical harmonics can easily get swamped. Since Algorithm

1 depends on spherical harmonics of degree l = 2K for the recovery of K dipoles, this makes
it particularly prone to noise for larger values of K. In principle, there are l(l + 1)/2 different
spherical harmonics of degree at most l that can be used to recover the data; however Algorithm 1
only uses 2l of these. Therefore the algorithm is suboptimal as it does not use all of the available
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Figure 4. Recovery of two and five circular defects for a disk domain and for a
“clover” domain (experiment 4). Dashed lines represent recovered defects using Al-
gorithm 2 (cf. Appendix A). Solid lines (red online) give the original defect locations.
First row: No noise. Second row: 2% noise in the output function f(x). Third row:
4% noise. Five different random simulations are shown for in each figure.

information. An optimal algorithm would only use harmonics of degree up to O(
√
K) and would

therefore be much less susceptible to noise. The design of such an optimal algorithm is an open
problem. Another approach which can be explored to combat noisy data is oversampling: it is
possible to improve recovery by generating more than the minimal number of equations. This leads
to an overdetermined system; nonlinear error minimisation techniques could then be used to reduce
the effect of the noise.
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Figure 5. “Recovery” of an irregular L-shaped inclusion using K discs (experiment 5).

Numerical experiments with irregular-shaped inclusions suggest that this approach can be useful
for recovery of larger contiguous patches (see Figure 5). These appear to be approximated surpris-
ingly well by multiple inclusions, even though they are not separated. A related approach was used
in [28] to recover inclusions consisting thin segments.
In our experiments, we fixed the number of inclusions K à priori and then applied the algorithm.

As K is increased, the matrix (13) often becomes ill-conditioned, resulting in tiny inclusions (i.e.
nearly zero radius). This is visible for example in figure 3 when K = 3 and in figure 5 when
K = 4, 6, 7. Detecting when the matrix (13) becomes singular (by thresholding on determinant or
condition number, for instance) is a good way to determine the appropriateK. This is the approach
that was also used in [11] for example. Surprisingly, as figure 5 shows, the matrix (13) can be ill-
conditioned for say K = 4 but becomes well-conditioned again when K = 5. This deserves further
investigation.
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Appendix A: two dimensions

Here we recall the algorithm in two dimensions which was derived in [9].

Algorithm 2. ([9], Solution to Problem 1 in R2).

1. Compute the 2K complex integrals

(18) An =

∫

∂Ω

f(y) yn−1 ν dS(y)− 1

n

∫

∂Ω

g(y) yn dS(y), n = 1 . . . 2K

where y and ν are to be interpreted as complex numbers with yn−1ν corresponding to complex
multiplication.

2. Solve the system

(19) An =
K
∑

j=1

wjξ
n−1
j , n = 1 . . . 2K

using the Lemma 1 to recover wj, ξj, j = 1 . . .K.

We now show that the method used in [12] for a single inclusion is equivalent to this algorithm;
this also provides its alternative derivation. We summarise the method used in [12]. It is based on
the function originally defined in [10],

(20) H(x) =

∫

∂Ω

f(y)ν · ∇yΦ(x, y)dS(y)−
∫

∂Ω

g(y)Φ(x, y)dS(y)

where

Φ(x, y) =
1

2π
ln |x− y|

is the free-space Green’s function, ∆Φ = δ(x− y). It then follows from (14) that for x /∈ Ω,

(21) H(x) =

K
∑

j=1

wj · ∇ξΦ(x, ξj), x /∈ Ω.

The idea in [12] is to take a constant R such that x /∈ Ω whenever |x| = R, and then look at the
Fourier decomposition of H(Reiθ); then solve the resulting system for ξj, wj. We now show that
this is equivalent to Algorithm 2 (cf. Appendix A). Indeed the following identity holds,

(22) ln |x− y| = −
∞
∑

n=1

1

2n

(

x−nyn + x−nyn
)

+ ln |x| , |x| > |y|

where x, y ∈ C are complex numbers. Take x = Reiθ and compute using (22),

(23)

∫ 2π

0

Φ(Reiθ, y)einθdθ = − 1

4n
R−nyn.

Next, note that for any vector w we have

w · ∇yn = n (y1 + iy2)
n−1 (̂ı + î) · w

= nyn−1w
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so that, in combination with (22)

(24)

∫

2π

0

w · ∇yΦ(Reiθ, y)einθdθ = −1

4
R−nyn−1w.

Next, choose R sufficiently large such that x /∈ Ω for whenever |x| = R. Integrate both sides of (14)
with respect to x on a circle of radius R. Using formulae (23) and (24), we then obtain

∫

∂Ω

n f(y) yn−1 ν dS(y)−
∫

∂Ω

g(y)yndS(y) =
K
∑

j=1

nξn−1
j wj

This is corresponds precisely to (18, 19). The derivation is complete. �
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