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We investigate the bounds on algebraic connectivity of graphs 
subject to constraints on the number of edges, vertices, and 
topology. We show that the algebraic connectivity for any tree 
on n vertices and with maximum degree d is bounded above 
by 2(d − 2) 1

n
+ O( ln n

n2 ). We then investigate upper bounds 
on algebraic connectivity for cubic graphs. We show that 
algebraic connectivity of a cubic graph of girth g is bounded 
above by 3 −23/2 cos(π/�g/2�), which is an improvement over 
the bound found by Nilli [34]. Finally, we propose several 
conjectures and open questions.
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1. Introduction

This paper is motivated by the following question: among all possible networks con-
necting n nodes, and subject to a specified resource or topology constraints, which one 
is the most effective at diffusing the flow of information? We are interested in the case 
where the network is undirected and all non-zero edges have the same weight.
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One of the simplest ways of modelling the information flow in a network is the linear 
consensus model, which is widely used in control theory [1]:

duj

dt
=

∑
j �=i

eij(ui − uj). (1)

Here eij denote edge weights between nodes i, j and uj is the “load” at node j; the 
information flows from i to j in proportion to the load differential between the nodes; 
eij = 1 if i and j are joined by an edge and is zero otherwise. For large t the solution 
to (1) is given by u(t) ∼ ū + Ce−λ2t, where ū is consensus (average) state and λ2 is the 
second smallest eigenvalue of the graph Laplacian matrix L = D − A where A is the 
adjacency matrix and D is the degree matrix (the smallest eigenvalue of L is zero and 
λ2 > 0 if and only if the network is connected). The eigenvalue λ2 is often called the 
algebraic connectivity of the graph [2], and roughly, the larger λ2, the faster u diffuses to 
its consensus state. In this sense, the “optimal” network is the one which maximizes the 
algebraic connectivity, subject to given constraints. This leads to the following question.

Question. Which graphs maximize the algebraic connectivity, given a set of constraints 
on the number of vertices, edges, maximum degree, and graph topology?

This and related questions arise in many diverse areas, including optimal network 
topologies [3]; scheduling and network coding [4]; experimental design [5,6], diffusion 
in small world networks [7,8], synchronization in complex networks [9], and ranking 
algorithms [10,11]. There is also a close link to expander graphs and Ramanujan graphs. 
These are graphs with “high” algebraic connectivity in some sense. See recent reviews 
[12,13] and references therein. A nice recent survey on algebraic connectivity is [14].

In general, the problem of finding the optimal graph given m edges and n vertices 
is known to be NP-complete [15]. Despite this fact, several simple heuristics exist that 
can be used to obtain a graph with reasonably large algebraic connectivity [16,17]. See 
also [18] for some results for almost-complete graphs, where m is close to n(n − 1)/2. In 
[19,20], the question of optimizing algebraic connectivity with respect to graph diameter 
was studied.

In this paper we are concerned with the regime where the number of edges m grows 
in proportion to the number of vertices n, so that the graph is relatively sparse. In par-
ticular, a random Erdos–Renyei graph with O(n) edges is well known to be disconnected 
with high probability as n → ∞, so for such a graph, λ2 = 0 almost surely [21,22], and 
as such, random graphs are not good optimizers in this regime. The smallest value for 
m for which the graph is connected is m = n − 1, in which case any connected graph 
is a tree (for disconnected graphs, λ2 = 0 so we only consider connected case). Without 
a degree restriction, the star, which is a tree having a single root and n − 1 leafs (see 
Fig. 1(a)), is the unique optimizer of algebraic connectivity among all trees of n vertices, 
with λ2 = 1 when n ≥ 3 [23,14]. However, many trees of importance to applications 
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Fig. 1. (a) The star, which is the maximizer of algebraic connectivity for all trees. (b) Maximally-balanced 
tree of degree at most d with n = d(d−1)K−2

d−2 vertices (here, n = 22, d = 3, K = 3). (c) The complete 
bipartite graph K2,n−2, which is a conjectured maximizer for all graphs of n vertices with m = 2(n − 2)
edges. (d) The Tutte 8-cage, which is the conjectured maximizer for the cubic graphs with 30 vertices.

have a degree restriction. For example, decision or binary trees have degree at most 3. 
Another important example are trees representing neuronal dendrites [24], which consist 
of mostly degree two vertices with an occasional degree 3 vertex (see [24] for further 
details). This motivates the following question.

Open question 1.1. Among all trees with n vertices with maximal vertex degree d, which 
tree maximizes the algebraic connectivity?

In this paper we give the following partial answer to this question:

Theorem 1.2. Let T be any tree with n vertices and maximum degree d. Then λ2(T ) ≤
2(d − 2) 1

n + O( ln n
n2 ) as n → ∞ for fixed d.

A bound without the O notation (valid even when n = O(1)), is given in (9).
A well-known “basic” upper bound for algebraic connectivity for any tree is λ2(T ) ≤

2 − 2 cos( π
D+1 ), where D is the diameter of T [14], and can be obtained by “pruning” 

any branches that are not along the longest path of the tree. This bound is attained 
for both the star graph and the path graph. However, in general, it is far from optimal 
when there is a restriction on the maximal degree of a tree. Among trees of maximal 
degree d, one has n ≤ d(d−1)D/2−2

d−2 (the equality is achieved only for a maximally bal-
anced tree such as shown in Fig. 1(b). A maximally balanced tree is a tree whose leafs 
are all at the same distance from a root vertex and whose non-leaf vertices all have 
the same degree). For fixed d and large n, this yields D ≥ O(lnn) so that the “basic” 
bound is λ2(T ) ≤ O(1/ ln2(n)), which is much worse than the O(1/n) bound of The-
orem 1.2. The lower bound for the algebraic connectivity of any tree of n vertices is 
attained by the path graph for which λ2 = 2 − 2 cos(πn ) = O( 1

n2 ), so that in general, 
O(1/n2) ≤ λ2 ≤ O(1/n).

The algebraic connectivity of a maximally balanced tree such as shown in Fig. 1(b) 
can be determined explicitly, as was done for example in [25–27]. It was found that 
λ2 ∼ d (d − 2) 1 as n → ∞ for such a tree. So the bound in Theorem 1.2
d−1 n
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is not optimal; in fact we conjecture that d
d−1 (d − 2) 1

n is the asymptotically opti-
mal upper bound as n → ∞. See Section 4 for further discussion and a related 
conjecture.

In Section 3 we explore optimal cubic (i.e. 3-regular) graphs, which have m = 3n/2
edges. We are motivated by the following question.

Open question 1.3. Among all cubic (i.e. 3-regular) graphs with n vertices, which one 
maximizes the algebraic connectivity?

Regular graphs appear in numerous applications where having high connectivity is 
important. It is well known that the expected algebraic connectivity of a random cubic 
graph is λ2 ∼ 3 − 2

√
2 +O(1/ ln(n)) as n → ∞ (see [28–31]). So unlike the case of trees 

of maximum degree 3, the maximum possible connectivity of a cubic graph is bounded 
away from zero. One of the applications of this fact is that a random cubic graph is an 
expander graph with very high probability [32,33].

The best known bound for λ2 was obtained by Nilli in [34]. He showed that for any 
cubic graph, λ2 ≤ 3 − 2

√
2 cos(2π/D) where D is its diameter. However so far, there 

is no example of a cubic graph that we know of, which actually attains this bound. In 
Section 4 we suggest a possible optimal bound when n = 2K − 2, which is tighter than 
Nilli’s bound, and which is achieved at least for n = 6, 14, 30 and 126. This is discussed 
in Conjecture 4.5. Related to this conjecture, we prove the following result.

Theorem 1.4. Suppose that a cubic graph G of n edges has girth g. Then λ2(G) ≤
3 − 2

√
2 cos(π/�g/2	).

For some graphs, this bound is actually achieved; see Fig. 1(d) and Section 4. As 
shown in Remark 3.2 below, the bound of Theorem 1.4 is better the result obtained by 
Nilli in [34], which is λ2(G) ≤ 3 − 2

√
2 cos(2π/�g/2	).

Finally, in Section 4, we discuss some numerical results, open questions and several 
conjectures, including the following conjecture:

Conjecture 1.5. Among all graphs with exactly n vertices and m = 2(n −2) edges, a graph 
which maximizes the algebraic connectivity is the complete bipartite graph K2,n−2 (see 
Fig. 1(c)), with λ2(K2,n−2) = 2.

2. Trees

In this Section we prove Theorem 1.2. We recall the alternative definition of λ2 for a 
graph G on n vertices using the Rayleigh quotient [14],

λ2 = min
x∈R

n subject to

∑
(i,j)∈E(G)(xi − xj)2∑n

j=1 x
2
j

. (2)

x1+···+xn=0
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We first need the following concept of a “modified” Laplacian eigenvalue. Given a graph 
G and a vertex r ∈ V (G), define

λ̃(G, r) := min
x∈Rn

x2
r +

∑
(i,j)∈E(G)(xj − xi)2∑n

j=1 x
2
j

(3)

An alternative definition is that λ̃ is the smallest eigenvalue of the eigenvalue problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ̃xj =
∑

(i,j)∈E(G)

(xj − xi), if j �= r

λ̃xj = xj +
∑

(i,j)∈E(G)

(xj − xi), if j = r
(4)

The proof of Theorem 1.2 relies on the following three lemmas:

Lemma 2.1. Let T be a tree with n vertices each of degree at most d, and whose root r
has degree at most d − 1. Then λ̃(T, r) ≤ d−2

d−1
1
n + O( ln n

n2 ).

Lemma 2.2. Given a graph G, and a vertex v with at least two edges (v, u) and (v, w)
such that removing v separates G into at least two or more disjoint subgraphs G1, G2 . . ., 
such that u ∈ V (G1) and w ∈ V (G2). Then

λ2(T ) ≤ max
(
λ̃(G1, u), λ̃(G2, w)

)
.

Lemma 2.3. Let T be a tree with n vertices and of maximal degree d. Then there exists a 
vertex v ∈ V (T ) such that removing v and its associated edges separates T into subtrees 
such that at least two of these subtrees have at least n−2

2(d−1) vertices.

Proof of Lemma 2.1. Choose unique positive integers m and K such that

n = 1 + (d− 1) + (d− 1)2 + · · · + (d− 1)K−1 + m, with 0 ≤ m < (d− 1)K

= (d− 1)K − 1
d− 2 + m. (5)

Sort the vertices according to their distance from the root, from smallest to largest. After 
sorting them, let V1 be the set containing the first vertex in the list, i.e. root vertex; let 
V2 contain the next d − 1 vertices; let V3 contain the next (d − 1)2 vertices and so on up 
to VK which contains (d − 1)K−1 vertices, and with VK+1 containing the remaining m
vertices. For vertex j ∈ Vk, assign a weight xj = 1 − ( 1

d−1 )k.
For a non-root vertex j ∈ V (T ), j �= r, let parent(j) ∈ V (T ) denote its parent, that is 

the neighbouring vertex that is closer to the root r. We then have
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x2
r +

∑
(i,j)∈E(T )

(xj − xi)2 = x2
r +

∑
j∈V (T ), j �=r

(xj − xparent(j))2

= x2
r +

K+1∑
k=2

∑
j∈Vk

(xj − xparent(j))2

Moreover, if j ∈ Vk with k > 1, then either parent(j) ∈ Vk or else parent(j) ∈ Vk−1. In 
both cases, we have

(xj − xparent(j))2 ≤
(

1
(d− 1)k − 1

(d− 1)k−1

)2

= (d− 2)2

(d− 1)2k

so that

x2
r +

∑
(i,j)∈E(T )

(xj − xi)2 ≤
(
d− 2
d− 1

)2

+
K∑

k=2

(d− 1)k−1 (d− 2)2

(d− 1)2k + m
(d− 2)2

(d− 1)2(k+1)

= d− 2
d− 1 − d− 2

(d− 1)K + m
(d− 2)2

(d− 1)2(k+1)

∼ d− 2
d− 1 + O(1/n). (6)

Similarly, we write

∑
i∈V (T )

x2
i =

K∑
k=2

∑
j∈Vk

x2
j .

Moreover, for j ∈ Vk, we have xj = 1 − ( 1
d )k so that

∑
i∈V (T )

x2
i =

K∑
k=2

(d− 1)k−1
(

1 −
(

1
d− 1

)k)2

+ m

(
1 −

(
1

d− 1

)K+1)2

=
(

(d− 1)K

(d− 2) + m

)[
1 + O

(
K

(d− 1)K

)]

= n
(
1 + O(K/n)

)
. (7)

Therefore

x2
r +

∑
(i,j)∈E(T )(xj − xi)2∑N

j=1 x
2
j

= d− 2
d− 1

1
n

+ O
(
K/n2).

Moreover, note from definition (5) of m and K that K = O(lnn) so that O(K/n2) =
O((lnn)/n2). Recalling the definition (3) of λ̃ completes the proof of the lemma. �
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Remark 2.4. The O notation can be avoided by computing all the terms in (6) and (7). 
Setting m = 0, we then obtain the upper bound without the O notation,

λ̃ ≤ (d− 2)2

(d− 1)K+1

( 1 − 1
(d−1)K−1

1 − 2(K−1)
(d−1)K (d− 2) − d−1−(d−1)−2

(d−1)K − 1
(d−1)2K+1

)
. (8)

The same bound is valid even if m > 0, because appending leafs to a tree only decreases 
λ̃ (see [14]). The bound (8) is very close (but not identical) to the upper bound as was 
obtained for Bethe trees with k = K + 1 levels in [25,27] using a related method.

Proof of Lemma 2.2. Let x be the eigenvector corresponding to λ̃(G1, u) and y be the 
eigenvector corresponding to λ̃(G2, w), so that xj = 0 for all j /∈ V (G1) and similarly 
yj = 0 for all j /∈ V (G2).

Consider any linear combination z = αx + βy. Note that zv = 0 and we have

∑
(i,j)∈E(G)

(zi − zj)2 = α2
( ∑

(i,j)∈E(G1)

(xi − xj)2 + x2
u

)

+ β2
( ∑

(i,j)∈E(G2)

(yi − yj)2 + y2
w

)
.

Moreover by orthogonality, we have |z|2 = α2|x|2 + β2|y|2. Define

R1(x) :=
∑

(i,j)∈E(G1)(xi − xj)2 + x2
u∑

i∈V (G1) x
2
i

, R1(y) :=
∑

(i,j)∈E(G2)(yi − yj)2 + y2
w∑

i∈V (G2) y
2
i

so that λ̃(G1, u) = R1(x), λ̃(G2, w) = R2(y). We have

∑
(i,j)∈E(G)(zi − zj)2

|z|2

=
α(

∑
(i,j)∈E(G1)(xi − xj)2 + x2

u) + β(
∑

(i,j)∈E(G2)(yi − yj)2 + y2
w)

α2|x|2 + β2|y|2

= R1(x) α2|x|2
α2|x|2 + β2|y|2 + R2(y)

β2|y|2
α2|x|2 + β2|y|2

≤ max
(
R1(x), R2(y)

)
≤ max

(
λ̃(G1, u), λ̃(G2, w)

)
.

Now choose α, β such that 
∑

i∈V (G) zi = 0. That is, take α
β = −(

∑
i∈V (G2) yi)/

(
∑

i∈V (G1) xi) as long as 
∑

i∈V (G1) xi �= 0; in the contrary case take α = 1, β = 0. 
Then from the definition (2) of λ2, we get
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λ2 ≤
∑

(i,j)∈E(G)(zi − zj)2

|z|2 ≤ max
(
λ̃(G1, u), λ̃(G2, w)

)

which concludes the proof. �
We note that an alternative proof of Lemma 2.2 can be given using the mini-max 

definition of λ2, as done by Nilli in [34].

Proof of Lemma 2.3. The algorithm to find v is simple: start with an arbitrary vertex v0
in T . Choose a neighbour v1 of v0 which belongs to the subtree with the largest number 
of vertices, among all the subtrees that are obtained by deleting v0 from T (in case of a 
tie, choose a vertex deterministically, e.g. the one with the smallest index). Continue this 
process, obtaining a sequence of vertices v0, v1, v2, . . . This sequence eventually settles 
to a two-cycle v, w, v, w, . . . When this happens, consider the two subtrees obtained by 
deleting the edge (v, w), call them T1 and T2. One of these tree, say tree T1 containing 
v, has at least n/2 vertices. Upon deleting v from this tree, we get at most d −1 subtrees 
of T1. So one of these subtrees must have the size at least (n/2 − 1)/(d − 1) = n−2

2(d−1)
vertices. But then the second tree T2 containing w must have at least n−2

2(d−1) vertices 
also, since it is the subtree that contains the most vertices among all subtrees obtained 
by deleting v. So v is the desired vertex. �

We are now in position to prove the main theorem of this paper.

Proof of Theorem 1.2. Choose a vertex v using Lemma 2.3, which separates the tree 
into at least two subtrees whose sizes are n1, n2 ≥ n−2

2(d−1) . Applying Lemmas 2.2 and 2.1
to these subtrees we obtain

λ2(T ) ≤ d− 2
d− 1 max

(
1
n1

,
1
n2

)
+ O

(
lnn

n2

)
≤ d− 2

d

2
n

+ O

(
lnn

n2

)
. �

The bound in Theorem 1.2 can be written without the O notation, by replacing the 
estimate for λ̃ in Lemma 2.1 with the estimate (8). To do this, choose K in (8) in such 
a way that the number of vertices in two subtrees produced by Lemma 2.3 is more than 
(d−1)K−1

d−2 (formula (5) with m = 0). That is, choose K such that (d−1)K−1
d−2 ≤ n−2

2(d−1) . We 
then obtain an upper bound without the O notation, namely that

λ2 ≤ right hand side of (8) with K =
⌊
logd−1

(
1 + (d− 2)(n− 2)

2(d− 1)

)⌋
. (9)

3. Cubic graphs

In this Section we give the proof of Theorem 1.4. It is a direct consequence of the 
following lemma.
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Lemma 3.1. Let TK be a graph consisting of two perfect binary trees of height K joined 
by an edge connecting their roots as illustrated here (with K = 3):

Suppose that a cubic graph G has TK as its subgraph. Then λ2(G) ≤ 3 − 23/2 cos(π/K).

Above, we defined the height K of a perfect binary tree as one less than the distance 
from any leaf to its root.

Remark 3.2. It was shown by Nilli [34] that for any cubic graph G, λ2(G) ≤ 3 −
23/2 cos(2π/D) where D is the diameter of the graph. If G has TK as its subgraph, 
then it has two vertices that are separated by distance at least K: take the first vertex to 
be the root of one of the two binary trees that make up TK and take the second vertex 
to be one of the leafs of the other subtree. So Nilli’s bound for the algebraic connectivity 
of G is 3 − 23/2 cos(2π/K). Thus, Lemma 3.1 is an improvement over Nilli’s bound for 
the case where TK is a subgraph of G. Similarly, a graph of girth g has diameter at least 
�g/2	, so that Nilli’s bound is 3 − 23/2 cos(2π/�g/2	) which is worse than the result of 
Theorem 1.4.

Proof. Consider the following choice of weights xj , j ∈ V (G): for nodes at level k on the 
right tree, assign weight xj = vk, where vk will be specified below; for nodes at level k
on the left tree, assign weight xj = −vk. For all other nodes, assign weight zero. With 
this choice, the sum of all the weights is zero, so that (x1, . . . , xn) ⊥ (1, 1, . . . , 1). Now 
consider any leaf vertex of TK . It has three edges: one that connects it to its parent, 
and two other edges that connect it to either another leaf whose weight is ±vK or to 
a vertex outside TK whose weight is zero. Therefore if (v, w) is an edge that connects 
v to the non-parent vertex w and a, b are the weights of v and w respectively, then 
(a − b)2 ≤ (vK − (−vK))2.

It follows that λ2(G) bounded by any eigenvalue μ of the eigenvalue problem

μv1 =
(
v1 − (−v1)

)
+ 2(v1 − v2); (10)

μvj = vj − vj−1 + 2(vj − vj+1), j = 2 . . .K − 1 (11)

μvK = vK − vK−1 + 2
(
vK − (−vK)

)
, (12)

corresponding to the K by K matrix
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M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −2
−1 3 −2

−1
. . . . . .
. . . 3 −2

−1 3 −2
−1 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Similar types of Toeplitz matrices are well-known and occur in many related problems, for 
example when computing eigenvalues of Bethe trees [25,27]. For reader’s convenience, 
here we show directly that its eigenvalues are given by μ = 3 − 23/2 cos(πk/K), k =
1 . . .K.

We have the following self-consistent anzatz for the eigenvector:

vj = Azj + B

(
1
2z

)j

, (13)

where A, B and z are to be found. Then it is easy to check that μvj = vj − vj−1 +
2(vj − vj+1) holds for any j, A, B whenever

μ = 3 − 2z − 1
z
. (14)

Write (10) as

μv1 = 3v1 − 2v2 − v0 + v0 + v1.

It follows that v0 + v1 = 0 so that A = −B. Similarly, from the last row we obtain 
2vk + 2vK+1 = 0, which yields an equation for z. After some algebra, this equation 
simplifies to

z−2K = 2K , z �= (1/2)1/2,

so that z = (1
2 )1/2e 2πij

2K . The choice j = 0 corresponds to vj = 0 for all j so this is not 
allowed. The remaining choices are

μ = 3 − 2
√

2 cos(πj/K), j = 1 . . .K

The smallest eigenvalue among these corresponds to the choice j = 1, which is precisely 
the bound of the lemma. �
Proof of Theorem 1.4. A cubic graph of girth g has a subtree TK as defined in Lemma 3.1, 
where K is any integer at most g/2. Applying Lemma 3.1 completes the proof. �
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Fig. 2. Trees of degree 3 on n vertices that have maximum possible the algebraic connectivity for a given n.

4. Computer experiments, open questions, discussion

We used the software Nauty [35] to generate all non-isomorphic trees of maximal 
degree d = 3 up to n = 23 vertices (according to Nauty, there are 565734 such trees 
with n = 23). We then computed the tree which maximizes λ2. The result is shown 
in Fig. 2. In all cases, the optimum tree was “well-balanced” in the sense that there 
was a central vertex whose removal subdivides the tree into three nearly equal subtrees. 
The maximizing tree was also unique. In the cases when n = d(d−1)K−2

d−2 (see Fig. 2, 
n = 10 or n = 22), the optimal tree appears to be the well-balanced Bethe tree whose 
algebraic connectivity is well-studied [25–27], and is asymptotic to λ2 ∼ d

d−1 (d − 2) 1
n . 

These computations suggest that the bound λ2(T ) ≤ 2(d −2) 1
n +O( ln n

n2 ) of Theorem 1.2
is not optimal. We propose the following optimal bound:

Conjecture 4.1. Let T be a tree with n vertices and maximum degree d. Then λ2(T ) ≤
d(d−2)
d−1

1
n + O( ln n

n2 ) as n → ∞ for fixed d.

In particular this conjecture is true for the well-balanced Bethe trees mentioned above. 
A stronger version of this conjecture is

Conjecture 4.2. Let T be a tree with n = d(d−1)K−2
d−2 vertices and maximum degree d. 

Then its algebraic connectivity is less than the algebraic connectivity of the well-balanced 
Bethe tree with n vertices whose non-leaf vertices have degree d.
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We verified this conjecture using Nauty with d = 3 and n = 10 and 22.
The bottleneck for improving Theorem 1.2 into Conjecture 4.1 is Lemma 2.3. It states, 

roughly, that there is a “central vortex” whose removal subdivides the tree into d trees 
such that at least two have ∼ n/(2(d − 1)) vortices. Indeed Conjecture 4.1 is true for 
trees that are “well balanced” in the following sense:

Proposition 4.3. Suppose that a tree T of order n and maximal degree d has a vertex 
whose removal subdivides T into subtrees such that at least two of the subtrees have at 
least (n − 1)/d vertices. Then Conjecture 4.1 is true.

The proof of this proposition is identical to Theorem 1.2, except that the bound n−2
2(d−1)

in Lemma 2.3 gets replaced by n−1
d , and therefore the prefactor 2(d − 2) in Theorem 1.2

gets replaced by d(d−2)
d−1 .

Proposition 4.3 is applicable to all “maximal” trees in Fig. 2 as they happen to be 
“well-balanced”. But most trees are not so well balanced. For example consider the 
following tree of 22 vertices:

Proposition 4.3 is not applicable to this tree: for example removing vertex 10 results in 
three subtrees of size 9, 6 and 6 whereas (n − 1)/d = 7 > 6. Removing other vertices is 
even worse. Nonetheless for this tree, λ2 = 0.0835 which is smaller than λ2 = 0.0936 of 
the well-balanced tree of 22 vertices.

Consider again Conjecture 1.5, which states that K2,n−2 has optimal algebraic connec-
tivity λ2 = 2 among all graphs with m = 2(n − 2) edges. We used Nauty to exhaustively 
search through all graphs with m = 2(n − 2) edges and with n up to 13, and chose those 
with highest algebraic connectivity. The “winners” of this race are shown in Fig. 3. For 
all n we tested, the highest connectivity λ2 = 2 was attained by the complete bipartite 
graph K2,n−2, although depending on n, several other graphs also had this connectiv-
ity. For example when n = 10, there are two graphs with λ2 = 2: one is the Petersen 
graph and the other is the complete bipartite graph K2,8. The number of graphs with 
m = 2(n − 2) edges seems to increase very fast with n: for example Nauty returned 
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Fig. 3. Graphs with maximal algebraic connectivity with m = 2(n − 2) edges. Exhaustive search through all 
such graphs was done using Nauty program up to n = 12. For n = 13, it was confirmed λ2 ≤ 1.6972 for 
graphs with minimum degree 3 (graphs with minimum degree 2 have λ2 at most 2n/(n-1)).

≈ 2.7 × 107 non-isomorphic connected graphs with 12 vertices and 20 edges whose mini-
mum degree is 2, making it prohibitively expensive to do an exhaustive search for bigger 
values of n (we restricted the minimum degree to 2 because λ2 is bounded by n

n−1d

where d is the minimum degree, and since we are only interested in λ2 well above 1). For 
n = 13 (and m = 22) we only searched through graphs whose minimum degree is 3, of 
which there are were about 1.6 × 106.
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For larger n, there appears to be a large jump between the maximum value λ2 = 2
and the next biggest value. For example with n = 13, the next maximal value is 1.6972, 
with nearly uniform degree distribution (all vertices have degree 3 or 4). The jump to 
the next λ2 is much smaller (1.6837). As far as we can tell, with the exception of K2,n−2, 
all other optimal or nearly-optimal graphs have vertices of degree either 3 or 4.

In Fig. 4 we list maximal graphs with n = 10 and with varying m. Complete bipartite 
graphs with m = b(n − b) are maximizers with λ2 = b, when b = 2, 3, 4, 5 and n = 10. It 
may be tempting to generalize Conjecture 1.5 as follows:

Is it true that among graphs of n vertices and m = b(n − b) edges, the graph with 
the highest algebraic connectivity of λ2 = b is attained by the complete bipartite graph
Kb,n−b when b < n/2?

In fact, the answer is false: it is known that for a random d-regular graph, the expected 
algebraic connectivity is λ2 ∼ d −2

√
d− 1 as n → ∞ [28,30,31]. Such graph has m = dn/2

edges. For large m, this corresponds to b ∼ d/2. Setting d/2 ∼ d − 2
√
d− 1, we obtain 

that at least for d ≥ 15 and large n, a random d-regular graph has higher connectivity 
than Kb,n−b with b = d/2, with very high probability. In other words, if b ≥ 8, Kb,n−b is 
not the maximizer of λ2 among the graphs of b(n −b) vertices. This leads to the following 
question:

Open question 4.4. Among graphs with m = bn edges, what is the degree distribution 
for that maximizes the algebraic connectivity, when b ≥ 8, b = O(1), and n → ∞?

We speculate that this question could have implications for airline network design. 
Most major US airlines utilize “hub-network” with several large airports serving multiple 
smaller airports. This is similar to the complete bipartite graph Kb,n−b. However the 
above results suggest that for airlines with more than 8 hubs, it is may be better to 
switch to more uniform topology, with each airport having roughly similar number of 
connections to others. Of course, there are many other factors to consider for airlines, such 
as city size and popular travel destinations, as well as the physical distance between cities. 
To what extent the algebraic connectivity plays any role in airport design is unclear.

For values of n > 12, exhaustive search is impractical and heuristic algorithms to 
maximize connectivity need to be used. In [16,17], the following “edge-augmentation” 
heuristic algorithm was suggested to find graphs with n vertices and m edges having 
relatively high algebraic connectivity:

1. Start with an empty graph of n vertices.
2. Compute the eigenvector v corresponding to λ2(G).
3. Find vertices i, j for which |vi − vj | is maximum. Add an edge (i, j) to G.
4. Repeat steps 2 and 3 until the graph has m edges.

The edge-augmentation gives better results when compared with d-regular graphs, for 
the same number of edges m = dn/2. However for b < 5 and with m = b(n − b), the 
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Fig. 4. Some of the “winning” graphs that have maximum possible algebraic connectivity with n = 10
vertices and m edges, with m as indicated. For some m, multiple maximizers exist but only one is shown.
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Fig. 5. Left: Comparison of algebraic connectivity obtained from edge-augmentation algorithm versus 
d-regular graphs and bipartite complete graphs Kb,n−b. For a given number of edges m, b is taken to be the 
largest integer such that b(n − b) ≤ m whereas d = 2m/n. Right: The distribution of degrees as obtained 
by the edge-augmentation algorithm with n = 100, m = 600. In this regime the edge-augmentation beats 
the both the d-regular graph (with d = 12) and Kb,n−b (with b = 6). Note the presence of a high-degree 
vertex.

complete bipartite graph Kb,n−b has λ2 = b, which is better than the edge-augmentation. 
On the other hand, edge-augmentation overtakes both complete bipartite graph when 
b > 6, as well as the d-regular graph with d = 2b > 12. This is illustrated in Fig. 5 with 
n = 100.

As mentioned in Remark 3.2, the bounds of Theorem 1.4 as well as in Lemma 3.1 are 
tighter than Nilli’s bound of 3 − 23/2 cos(2π/D). Our numerical investigations suggest 
that this is true in general. We pose this as a conjecture.

Conjecture 4.5. Any cubic graph of diameter D has algebraic connectivity at most 3 −
23/2 cos(π/D). Any cubic graph of order n = 2K+1−2 has algebraic connectivity at most 
3 − 23/2 cos(π/K).

An g-cage is a cubic graph of girth g with smallest possible number of vertices. Mo-
tivated by the search for cages, many sophisticated techniques have been developed 
for exhaustive enumeration of cubic graphs, especially for those of high girth [36–39]. 
For smaller n, tables of cubic graphs are available on the website House of Graphs, 
http :/ /hog .grinvin .org /Cubic. Upon checking these tables in every case we checked, the 
maximizer for the algebraic connectivity of cubic graphs with given number of vertices 
is also the graph that has the highest possible girth. Using the table we verified Conjec-
ture 4.5 for K up to 3 (when n = 14). In the case K = 2, 3, 4 and 6 the conjectured 
bound is actually attained by cubic graphs that have maximal possible girth as listed in 
the following table.

http://hog.grinvin.org/Cubic
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K n Upper bound 
3 −23/2 cos π

K

Notes

2 6 3 Unique graph attains this bound. It has girth 4.

3 14 1.58578 Nauty was used to verify that this bound is attained by a unique 
cubic graph of girth 6, the Heawood Graph

4 30 1 The unique cubic graph of girth 8, the Tutte 8-cage. attains this 
bound. All 545 cubic graphs with 30 vertices and with girth =7 
have algebraic connectivity strictly less than this.

5 62 0.71175 Of 27169 cubic graphs that have girth 9, none attain this bound. 
Among them, maximum is λ2 = 0.603671.

6 126 0.55051 Tutte 12-Cage (girth 12) attains this.

7 254 0.451675 ????

The maximal graphs listed above corresponding to K = 2, 3, 4, 6 all contain TK as 
a subgraph; the case n = 14 is shown in Fig. 1(d). However the maximizer graph for 
K = 5 of girth 9 does not contain TK . For K ≥ 4, it is not known whether there are 
graphs with even higher algebraic connectivity.

A complete list of graphs with 62 vertices and of maximal possible girth 9 was kindly 
supplied by Brendon Mckay [40]. He computed it using the program described in [38]. 
The computation took about 1000 machine hours and resulted in 27169 graphs of girth 9. 
Among these, the maximal algebraic connectivity of λ2 = 0.603671 was attained by a 
single graph.
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